PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Removal of Fines from Reclaimed Asphalt Binder Using Fourier Transform Infrared Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The natural environment is suffering greatly from population growth, industrialization, and waste production. When pavements are to be repaired or reconstructed, the waste material poses a threat as it is landfilled and not used up to its potential. Reclaimed asphalt pavement (RAP) has been gaining importance as there is a depletion of natural resources as well as its potential to perform well if reused or recycled. The extraction and recovery process is carried out to evaluate the properties of the aged binder in RAP. Extraction and recovery need to be coupled with gravitational sedimentation and filtration for the removal of mineral fillers from the aged binder + solvent solution. This study uses Centrifuge extraction and a rotary evaporator for extraction and recovery, respectively. In this study, three different solvents, namely tri-chloroethylene (TCE), toluene, and n-propyl bromide (nPB) are used for the centrifuge extraction. Extraction was followed by gravitational sedimentation and filtration. The results were evaluated by Fourier Transform Infrared spectroscopy (FTIR). Gravitational sedimentation is carried out and samples are tested after 0, 30, 60, 120, 240, and 1440 min by FTIR followed by filtration. In order to assess the properties of aged binder accurately, it should be free from mineral fines. Based on the properties of aged asphalt, percentages of RAP binder and rejuvenator by virgin binder can be evaluated. The results demonstrated that the removal efficiencies were affected by the type of solvent used for extraction.
Słowa kluczowe
EN
FTIR   RAP   recovery   extraction   solvent   fines  
Twórcy
  • Civil Engineering Department, COEP Technological University, Pune, Maharashtra, 411005, India
  • Civil Engineering Department, COEP Technological University, Pune, Maharashtra, 411005, India
Bibliografia
  • 1. Mallick R.B., Veeraragavan A. Sustainable pavements in India-the time to start is now. New Building Materials and Construction World (NBM&CW) Magazine. 2010; 16(3): 128–40.
  • 2. Singh D., Girimath S., Ashish P.K. Effect of recycled asphalt binder on high and intermediate temperature performance of polymer modified asphalt binder. International Journal of Pavement Research and Technology. 2019; 12(5).
  • 3. Ong J.K., Gungat L., Hamzah M.O. Fracture properties of reclaimed asphalt pavement mixtures with rejuvenator. Constr Build Mater. 2020; 259: 119679.
  • 4. Mariyappan R., Palammal J.S., Balu S. Sustainable use of reclaimed asphalt pavement (RAP) in pavement applications—a review. Environmental Science and Pollution Research. 2023; 30(16): 45587–606.
  • 5. Magar S., Xiao F., Singh D., Showkat B. Applications of reclaimed asphalt pavement in India – A review. Journal of Cleaner Production. 2022; 335.
  • 6. Barkale E.A.D., Thakare S.B. Parametric Studies on Structural Behaviour of Strengthened Beams Using Glass Fiber Reinforced Plastic. Advances in Science and Technology Research Journal. 2022; 16(6): 192–7.
  • 7. Lotfi-Eghlim A., Karimi M.S. Fatigue behavior of hot mix asphalt modified with nano al2o3–an experimental study. Advances in Science and Technology Research Journal. 2016; 10(31): 58–63.
  • 8. Al-Marafi M.N.I. Effects of Hydrated Lime on Moisture Susceptibility of Asphalt Concrete. Advances in Science and Technology Research Journal. 2021; 15(2).
  • 9. Mullapudi R.S., Sudhakar Reddy K. Relationship between Rheological Properties of RAP Binders and Cohesive Surface Free Energy. Journal of Materials in Civil Engineering. 2020; 32(6).
  • 10. Devulapalli L, Kothandaraman S, Sarang G. Microstructural characterisation of reclaimed asphalt pavement with rejuvenators. International Journal of Pavement Engineering. 2022; 23(4): 1038–49.
  • 11. Tarsi G., Tataranni P., Sangiorgi C. The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials. 2020; 13.
  • 12. Rathore M., Haritonovs V., Merijs Meri R., Zaumanis M. Rheological and chemical evaluation of aging in 100% reclaimed asphalt mixtures containing rejuvenators. Constr Build Mater. 2022; 318.
  • 13. Zargar M., Ahmadinia E., Asli H., Karim M.R. Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. J Hazard Mater. 2012; 233: 254–8.
  • 14. Wang J., Yuan J., Kim K.W., Xiao F. Chemical, thermal and rheological characteristics of composite polymerized asphalts. Fuel. 2018; 227: 289–99.
  • 15. Bhagat N.T., Hadole H.P., Hedaoo N.A., Ranadive M.S. Study of Flow Behavior and Aging Resistance of Pyro-Oil Modified Bitumen. In: Airfield and Highway Pavements. 2023; 185–99.
  • 16. Mikhailenko P., Ataeian P., Baaj H. Extraction and recovery of asphalt binder: a literature review. International Journal of Pavement Research and Technology. 2020; 13.
  • 17. Mikhailenko P., Webber G., Baaj H. Evaluation of solvents for asphalt extraction. Road Materials and Pavement Design. 2021; 22(5).
  • 18. Xie X., Tong S., Ding Y., Liu H., Liang L. Effect of the amount of mineral powder on the ultraviolet aging properties of asphalt. Advances in Materials Science and Engineering. 2016; 2016.
  • 19. Bhagat N.T., Hadole H.P., Ranadive M.S. Oxidative Aging Characterization of Pyro-Oil Modified Binders Using Fourier Transform Infrared Spectroscopy. Advances in Science and Technology Research Journal. 2023; 17(1): 140–9.
  • 20. Marsac P., Piérard N., Porot L., Van den Bergh W., Grenfell J., Mouillet V., et al. Potential and limits of FTIR methods for reclaimed asphalt characterisation. Mater Struct. 2014; 47: 1273–86.
  • 21. Nivitha M.R., Prasad E., Krishnan J.M. Ageing in modified bitumen using FTIR spectroscopy. International Journal of Pavement Engineering. 2016; 17(7): 565–77.
  • 22. Hadole H.P., Ranadive M.S. FTIR Analysis for Ageing of HDPE Pyro-oil Modified Bitumen. In: Recent Trends in Construction Technology and Management: Select Proceedings of ACTM 2021. Springer. 2022; 1311–28.
  • 23. Xiang Q., Hou X., Zhao Z., Prozzi J., Xiao F. Comparative Evaluation of Methods for Removing Residual Mineral Fillers during Bitumen Extraction and Recovery Based on FTIR. Journal of Materials in Civil Engineering. 2020; 32(12).
  • 24. Lin C.F., Tseng W.T., Feng M.S. Formation and characteristics of silicon nanocrystals in plasma- enhanced chemical-vapor-deposited silicon-rich oxide. J Appl Phys. 2000; 87(6): 2808–15.
  • 25. ASTM N. D2172.(s/f). Standard Test Methods for Quantitative Extraction of Bitumen From Bitumi- nous Paving Mixtures. ASTM International West Conshohocken, PA, USA. 2005.
  • 26. ASTM. ASTM D5404/D5404M-12, standard practice for recovery of asphalt from solution using the rotary evaporator. 2012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b59f56-d31c-4fe7-8788-657fb44ce84c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.