Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Metoda oceny symulacji charakterystyk wzoru kamuflażu optycznego
Języki publikacji
Abstrakty
A comprehensive evaluation system for a camouflage design combining local effect evaluation and global sampling is developed. Different from previous models, this method can sample and evaluate target camouflage in a wide range of combat areas, thereby obtaining a comprehensive evaluation effect. In evaluating local effects, the Gaussian pyramid model is adopted to decompose the image on a multi-scale so that it can conform to the multi-resolution property of human eyes. The Universal Image Quality Index (UIQI) conforming to features of eye movements is then adopted to measure the similarities between multi-scale targeted and background brightness, color and textural features. In terms of the imitation camouflage pattern design algorithm, uniform sampling is used to obtain the evaluation distribution in the background; while for the deformation camouflage pattern, the sampling distribution is improved to make it conform to the movement rule of the target in the background. The evaluation results of the model for different designs were investigated. It is suggested by the experimental results that the model can compare and evaluate the indicators involved in the process of camouflage design, including integration, polychromatic adaptability and algorithm stability. This method can be applied in the evaluation and contrast of camouflage pattern design algorithms, in parameter optimisation of camouflage design and in scheme comparison in engineering practice, and can provide support of evaluation methodology for camouflage design theories.
W pracy opracowano kompleksowy system oceny projektu kamuflażu, łączący ocenę efektu lokalnego i próbkowanie globalne. W odróżnieniu od poprzednich modeli, ta metoda może próbkować i oceniać kamuflaż celu w szerokim zakresie obszarów walki, uzyskując w ten sposób kompleksowy efekt oceny. Oceniając efekty lokalne, przyjęto model piramidy Gaussa w celu dekompozycji obrazu w wielu skalach, tak aby mógł on być zgodny z właściwościami i rozdzielczością ludzkiego oka. Następnie przyjęto uniwersalny wskaźnik jakości obrazu (UIQI) zgodny z cechami ruchów oczu, tak aby zmierzyć podobieństwa między celowaniem w wielu skalach a jasnością tła, kolorem i cechami tekstury. Jeśli chodzi o algorytm projektowania imitacji wzoru kamuflażu, w celu uzyskania rozkładu oceny w tle zastosowano jednolite próbkowanie; podczas gdy w przypadku wzoru kamuflażu deformacji poprawiono rozkład próbkowania, tak aby był zgodny z regułą ruchu celu w tle. Zbadano wyniki oceny modelu dla różnych projektów. Wyniki eksperymentów wykazały, że model może służyć do porównania i oceny wskaźników procesu projektowania kamuflażu, w tym integrację, polichromatyczną adaptowalność i stabilność algorytmu. Metoda przedstawiona w pracy może znaleźć zastosowanie w ocenie algorytmów projektowania wzorów kamuflażu, w optymalizacji parametrów projektowania kamuflażu i przy porównywaniu schematów w praktyce inżynierskiej, a także może stanowić wsparcie dla metodologii oceny teorii projektowania kamuflażu.
Czasopismo
Rocznik
Strony
103--110
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Army Engineering University, National Key Laboratory of Lightning Protection and Electromagnetic Camouflage, Nanjing, Jiangsu, 210007, China
autor
- Army Engineering University, National Key Laboratory of Lightning Protection and Electromagnetic Camouflage, Nanjing, Jiangsu, 210007, China
autor
- Army Engineering University, National Key Laboratory of Lightning Protection and Electromagnetic Camouflage, Nanjing, Jiangsu, 210007, China
autor
- Army Engineering University, National Key Laboratory of Lightning Protection and Electromagnetic Camouflage, Nanjing, Jiangsu, 210007, China
autor
- Army Engineering University, Teaching and Research Office of Camouflage in Training Center, Xuzhou, Jiangsu, 221004, China
Bibliografia
- 1. Brunyé TT, Martis SB, Kirejczyk JA, Rock K. Camouflage Pattern Features Interact with Movement Speed to Determine Human Target Detectability. Applied Ergonomics 2019; 77: 50-77.
- 2. Li Z, Yu J, Hu Z, Kang Q. Gao S. A Method of Stitching Digital Camouflage Patterns on Different Planes Based on Texture Synthesis and Best Seam Line Algorithm. Acta Armamentarii 2019; 40, 03: 666-672.
- 3. Jia Q, Lü XL, Wu C, Tang HC. Evaluation of Camouflage Effectiveness Using Hu man Visual Attention Mechanism. Journal of Applied Sciences 2011; 29, 03: 294-298.
- 4. Lin W, Chen YH, Wang JY, Su RH. Camouflage Assessment Method Based on Image Features and Psychological Perception Quantity. Acta Armamentarii 2013; 34, 04: 412-417.
- 5. Dai J. Research on the Evaluation of Camouflage Effect Based on Similarity. Master’s degree, XiAn Industrial University, 2018.
- 6. Yu J, Zhu LF, Du HL. Evaluation Model of Optical Camouflage Effect Based on BP Neural Network. Shipboard Electronic Countermeasure 2009; 32, 06: 55-57.
- 7. Liu Z, Shao L, Wang Z, Yu D. Visible Light Camouflage Effectiveness Assessment Combining Information of Color and Distribution. Infrared and Laser Engineering 2012; 41, 04: 984-988.
- 8. Lin W, Chen YH, Gao HS, Lin L. A Method of Camouflage Evaluation Based on Texture Analysis Model of Gabor Wavelet. Acta Armamentarii 2007; 10: 1191-1194.
- 9. Wang Z, Yan YH, Jiao XY. Multi-index Comprehensive Evaluation of Camouflage Based on Gray Theory. Acta Armamentarii 2013; 34, 10: 1250-1257.
- 10. Xue F, Wu F, Jianwei W, Hu Y. Camouflage Texture Design Based on its Camouflage Performance Evaluation. Neurocomputing 2017; 274: S0925231217306732.
- 11. Heinrich DH, Selj GK. The Effect of Contrast in Camouflage Patterns on Detectability by Human Observers and CAMAELEON. Spie Defense + Security, 2015.
- 12. Cui BS, Xue SQ, Ji YJ, Yu HY, Zhang Y. Camouflage Effectiveness Evaluation Based on Image Feature. Infrared and Laser Engineering 2010; 39, 06: 1178-1183.
- 13. S. Khan, A. Khan, M. Maqsood, F. Aadil, and M. A. Ghazanfar, Optimized Gabor Feature Extraction for Mass Classification Using Cuckoo Search for Big Data E-Healthcare. Journal of Grid Computing 2018; 1-16.
- 14. Kim NC, So HJ. Directional Statistical Gabor Features for Texture Classification. Pattern Recognition Letters 2018; p. S0167865518301855.
- 15. Perraudin N, Holighaus N, Søndergaard PL, Balazs P. Designing Gabor Windows Using Convex Optimization. Applied Mathematics and Computation 2018; 330, C: 266-287.
- 16. Wang M, Gao L, Huang X, Jiang Y, Gao X. A Texture Classification Approach Based on the Integrated Optimization for Parameters and Features of Gabor Filter via Hybrid Ant Lion Optimizer. Appl. Sci. 2019; 9, 2173.
- 17. Lin CJ, Chang CC, and Lee YH, Evaluating camouflage design using eye movement data, Applied Ergonomics, vol. 45, no. 3, pp. 714-723, 2014.
- 18. FriiKovec M, GabrijelI H, Simon B. Design and Evaluation of a Camouflage Pattern for the Slovenian Urban Environment. Journal of Imaging Science & Technology 2010; 54, 2: 20507-1-20507-11(11).
- 19. Hogervorst MA, Toet A. Design and Evaluation of (Urban) Camouflage. Proc. Spie. 2010; 7662, 1: 202-206.
- 20. Yu J, Shuang X. Design of Imitation Digital Camouflage. Journal of Applied Sciences 2012; 30, 04: 331-334.
- 21. Andersen N. Classification of Congruences for Mock Theta Functions and Weakly Holomorphic Modular Forms. Quarterly Journal of Mathematics 2018; 65, 3: 781-805.
- 22. Bibak K, Kapron BM, Srinivasan V. Unweighted Linear Congruences with Distinct Coordinates and the Varshamov–Tenengolts Codes. Designs Codes & Cryptography 2018; 86, 9: 1893-1904.
- 23. Kan ID. Linear Congruences in Continued Fractions on Finite Alphabets. Mathematical Notes 2018; 103, 5-6: 911-918.
- 24. Shen H, Zhang P, Wang K. Improved Linear Congruential Random Number Generators. J Tsinghua Univ (Sci & Tech) 2009; 49, 02: 191-193.
- 25. YANG JT, XU WD, QU Y, CUI GZ. A Surendra-based Improved Detection Method of Moving Target Camouflage Effect. Acta Armamentarii 2017; 38, 01: 190-194.
- 26. Bhuyan P. Estimation of Random-Effects Model for Longitudinal Data with Nonignorable Missingness Using Gibbs Sampling. Computational Statistics, 2019; 422.
- 27. Cheng L, Zhang L, Lei B, Liang Z, Liu P. An Average Moment-Independent Importance Index and its Rejection Sampling Method. Journal of Beijing University of Aeronautics and Astronautics 2019; 45, 01: 66-73.
- 28. Erdil E, Yildirim S, Tasdizen T, Cetin M. Image Segmentation with Pseudo-marginal MCMC Sampling and Nonparametric Shape Priors, 2018.
- 29. Azetsu T, Suetake N. Hue-Preserving Image Enhancement in CIELAB Color Space Considering Color Gamut. Optical Review 2019; 12: 1-12.
- 30. Khanali H, Vaziri B. An Improved Approach to Fuzzy Clustering Based on FCM Algorithm and Extended VIKOR Method. Neural Computing Applications 2019; 3.
- 31. Liu ZY, Wang ZR, Yu DB, Sun XQ. Extracting Dominant Colors of Imitative Pattern Painting with CIEDE2000 and Pyramid FCM. Infrared and Laser Engineering 2010; 39, 02: 367-371.
- 32. Qi J, Xu-Liang L, Chao W, and Xian-Hui R. Application of Markov Random Field and Pyramid Structure in the Design of Digital Pattern Painting. Journal of Applied Sciences 2012; 30, 6: 624-628.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7b0ab75-902a-4746-a6fd-a13853b21ccb