Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Chemical ligation methods in the synthesis of peptides and proteins. Part 2
Języki publikacji
Abstrakty
Proteins are synthesized only by living organisms. Today, we are able to receive them by recombinant protein expression in bacterial cells. This technique is very useful and gives satisfactory amount of desirable material but it precludes the possibility of introduction of some chemical modifications that are often obligatory. For this reason, chemical synthesis of longer peptide chains is still important and is the object of scientists attention. Over the last century, notion of peptide synthesis took a new meaning. Nowadays, we know a number of innovative methods and also automated devices which help us to make progress in this area. Nevertheless, the synthesis of longer, more complicated peptide chains and proteins still constitutes a problem. Native chemical ligation (NCL) has facilitated the synthesis of numerous complex peptide and protein targets. Expansion of ligation techniques has allowed the entry of peptides into the world of therapeutic drugs [1]. NCL reactions are carried out in aqueous solution and give good yields. Due to mild conditions, NCL overcomes racemic and solubility problems encountered in classical peptide synthesis using protected fragments. The challenge is to synthesize the C-terminal thioester-containing peptide necessary for the transesterification reaction, which is the first step of linking the peptide fragments [2]. In this review we discuss the evolution, advantages and potential applications of chemical ligation reactions. In the first part of this article we described the utility of native chemical ligation approach to non-cysteine containing peptides. This part details a number of important approaches to the synthesis of peptides bearing a C-terminal thioester. Contemporary applications of these techniques to the total chemical synthesis of proteins are also presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
747--761
Opis fizyczny
Bibliogr. 27 poz., rys., schem.
Twórcy
autor
- Katedra Chemii Biomedycznej, Wydział Chemii, Uniwersytet Gdański, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
- Katedra Chemii Biomedycznej, Wydział Chemii, Uniwersytet Gdański, ul. Wita Stwosza 63, 80-308 Gdańsk
autor
- Katedra Chemii Biomedycznej, Wydział Chemii, Uniwersytet Gdański, ul. Wita Stwosza 63, 80-308 Gdańsk
Bibliografia
- [1] L.R. Malins, R.J. Payne, Top. Curr. Chem., 2014, 362, 27.
- [2] W. Kamysz, D. Grzywacz, Laborant, 2014, 9, 12.
- [3] S. Doonan, Białka i peptydy, PWN, Warszawa 2008.
- [4] R.B. Merrifield, J. Am. Chem. Soc., 1963, 85, 2149.
- [5] W. Kamysz, Laborant, 2011, 2, 38.
- [6] S.B. Kent, P.E. Dawson, I. Clark-Lewis, T.W. Muir, Science, 1994, 266, 776.
- [7] S. Chandrudu, P. Simerska, I. Toth, Molecules, 2013, 18, 4373.
- [8] P.E. Dawson, M.J. Churchill, M. Reza Ghadiri, S.B. Kent, J. Am. Chem. Soc., 1997, 119, 4325.
- [9] E.C. Johnson, S.B. Kent, J. Am. Chem. Soc., 2006, 128, 6640.
- [10] S. Futaki, K. Sogawa, J. Maruyama,, T. Asahara, M. Niwa, Tetrahedron Lett., 1997, 38, 6237.
- [11] K. Kitagawa, H. Adachi, Y. Sekigawa, T. Yagami, S. Futaki, Y.J. Gu, K. Inoue, Tetrahedron, 2004, 60, 907.
- [12] C.P. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. Engl., 2008, 47, 10030.
- [13] H.P. Hemantha, N. Narendra, V.V. Sureshbabu, Tetrahedron, 2012, 68, 9491.
- [14] K.J. Jensen, J. Alsina, M.F. Songster, F. Vágner, F. Albericio, A. Barany, J. Am. Chem. Soc., 1998, 120, 5441.
- [15] J. Tulla Puche, G. Barany, J. Org. Chem., 2004, 69, 4101.
- [16] N. Ollivier, J. Dheur, R. Mhidia, A. Blanpain, O. Melnyk, Org. Lett., 2010, 12, 5238.
- [17] L. Raibaut, J. Vicogne, B. Leclercq, H. Drobecq, R. Desmet, O. Melnyk, Bioorg. Med. Chem., 2013, 21, 3486.
- [18] Y.H. Woo, A.R. Mitchell, J.A. Camarero, Int. J. Pept. Res. Therap., 2007, 13, 181.
- [19] C. Rosenbaum, H. Waldmann, Tetrahedron Lett., 2001, 42, 5677.
- [20] J.B. Blanco-Canosa, P.E. Dawson, Angew. Chem. Int. Ed., 2008, 47, 1.
- [21] S.K. Mahto, C.J. Howard, J.C. Shimko, J.J. Ottesen, ChemBioChem, 2011, 12, 2488.
- [22] J.C. Shimko, A.J. North, A.N. Bruns, M.G. Poirier, J.J. Ottesen, J. Mol. Biol., 2011, 408, 187.
- [23] J. Zheng, S. Tang, Y. Qi, Z. Wang, L. Liu, Nat. Protoc., 2013, 8, 2483.
- [24] Q. He, J. Li, Y. Qi, Z. Wang, Y. Huang, L. Liu, Sci. China Chem., 2017, 60, 621.
- [25] L. Shi, H. Chen, S. Zhang, T. Chu, Y. Zhao, Y. Chen, Y. Li, J. Pept. Sci., 2017, 23, 438.
- [26] S. Buhler, J.H. Akkerdaas, T.A. Pertinhez, R. Van Ree, A. Dossena, S. Sforzaa, T. Tedeschi, J. Pept. Sci., 2017, 23, 282.
- [27] T. Noguchi, H. Ishiba, K. Honda, Y. Kondoh, H. Osada , H. Ohno, N. Fujii, S. Oishi, Bioconjugate Chem., 2017, 28, 609.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7abda42-36a1-4846-8299-9038973af5df