Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Numerous algorithms have met complexity in recognizing the face, which is invariant to plastic surgery, owing to the texture variations in the skin. Though plastic surgery serves to be a challenging issue in the domain of face recognition, the concerned theme has to be restudied for its hypothetical and experimental perspectives. In this paper, Adaptive Gradient Location and Orientation Histogram (AGLOH)-based feature extraction is proposed to accomplish effective plastic surgery face recognition. The proposed features are extracted from the granular space of the faces. Additionally, the variants of the local binary pattern are also extracted to accompany the AGLOH features. Subsequently, the feature dimensionality is reduced using principal component analysis (PCA) to train the artificial neural network. The paper trains the neural network using particle swarm optimization, despite utilizing the traditional learning algorithms. The experimentation involved 452 plastic surgery faces from blepharoplasty, brow lift, liposhaving, malar augmentation, mentoplasty, otoplasty, rhinoplasty, rhytidectomy and skin peeling. Finally, the proposed AGLOH proves its performance dominance.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 20180033
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Swami Ramanand Teerth Marathwada University, School of Computational Sciences, Vishnupuri Nanded, India
autor
- Department of Electronics and Telecommunication Engineering, Shri Guru Gobingji Singh Institute of Engineering and Technology, Nanded, Maharashtra, India
Bibliografia
- [1] Chude-Olisah CC, Sulong GB, Chude-Okonkwo UAK, Hashim SZM. Edge-based representation and recognition for surgically altered face images. In: Signal Processing and Communication Systems (ICSPCS), 2013 7th International Conference on, Carrara, VIC, 2013:1-7.
- [2] Besson G, Barragan-Jason G, Thorpe SJ, Fabre-Thorpe M, Puma S, Ceccaldi M, Barbeau EJ. From face processing to face recognition: comparing three different processing levels. Cognition 2017;158:33-43.
- [3] Uddin MZ, Hassan MM, Almogren A, Alamri A, Alrubaian M, Fortino G. Facial expression recognition utilizing local direction-based robust features and deep belief network. IEEE Access 2017;5:4525-36.
- [4] Wingenbach TSH, Ashwin C, Brosnan M. Diminished sensitivity and specificity at recognising facial emotional expressions of varying intensity underlie emotion-specific recognition deficits in autism spectrum disorders. Res Autism Spect Dis 2017;34:52-61.
- [5] Moeini A, Moeini H, Faez K. Unrestricted pose-invariant face recognition by sparse dictionary matrix. Image Vision Comput 2015;36:9-22.
- [6] Ali ASO, Sagayan V, Malik A, Aziz A. Proposed face recognition system after plastic surgery. IET Comput Vision 2016;10:342-8.
- [7] Bhatnagar K, Gupta S. Extending the neural model to study the impact of effective area of optical fiber on laser intensity. Int J Intell Eng Syst 2017;10:274-83.
- [8] Chude-Olisah CC, Sulong G, Chude-Okonkwo UAK, Hashim SZM. Face recognition via edge-based Gabor feature representation for plastic surgery-altered images. EURASIP J Adv Sign Process 2014;102:1-15.
- [9] De Marsico M, Nappi M, Riccio D, Wechsler H. Robust face recognition after plastic surgery using local region analysis. Image Anal Recogn 2011;6754:191-200.
- [10] Bhatt HS, Bharadwaj S, Singh R, Vatsa M. Recognizing surgically altered face images using multiobjective evolutionary algorithm. IEEE Trans Info Foren Sec 2013;8:89-100.
- [11] Nappi M, Ricciardi S, Tistarelli M. Deceiving faces: when plastic surgery challenges face recognition. Image Vision Comput 2016;54:71-82.
- [12] Kohli N, Yadav D, Noore A. Multiple projective dictionary learning to detect plastic surgery for face verification. IEEE Access 2015;3:2572-80.
- [13] Tzou CHJ, Frey M. Evolution of 3D surface imaging systems in facial plastic surgery. Facial Plast Surg Clin North Am 2011;19:591-602.
- [14] Zou WWW, Yuen PC. Very low resolution face recognition problem. IEEE Trans Image Process 2012;21:327-40.
- [15] Lee SH, Kim DJ, Cho JH. Illumination-robust face recognition system based on differential components. IEEE Trans Consum Electr 2012;58:963-70.
- [16] Park U, Tong Y, Jain AK. Age-invariant face recognition. IEEE Trans Pattern Anal Mach Intell 2010;32:947-54.
- [17] Sharma P, Yadav RN, Arya KV. Pose-invariant face recognition using curvelet network. IET Biometrics 2014;3:128-38.
- [18] Geng C, Jiang X. Face recognition using SIFT features. In: 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, 2009:3313-6.
- [19] Chen C, Dantcheva A, Ross A. An ensemble of patch-based sub spaces for makeup-robust face recognition. Inform Fusion 2015;000:1-13.
- [20] Franco A, Nanni L. Fusion of classifiers for illumination robust face recognition. Expert Syst Appl 2009;36:8946-54.
- [21] Singh R, Vatsa M, Noore A. Effect of plastic surgery on face recognition: a preliminary study. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Miami, FL, 2009:72-7.
- [22] Singh R, Vatsa M, Bhatt HS, Bharadwaj S, Noore A, Nooreyezdan SS. Plastic surgery: a new dimension to face recognition. IEEE Trans Info Foren Sec 2010;5:441-8.
- [23] Liu X, Shan S, Chen X. Face recognition after plastic surgery: a comprehensive study. Comput Vis 2013;7725:565-76.
- [24] Al-Azzawy DS, Al-Azzawy S. Eigenface and SIFT for gender classification. Wasit J Sci Med 2012;5:60-76.
- [25] Lakshmiprabha NS, Majumder S. Face recognition system invariant to plastic surgery. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), Kochi, 2012:258-63.
- [26] Bhatnagar K, Gupta SC. Investigating and modeling the effect of laser intensity and nonlinear regime of the fiber on the optical link. J Opt Commun 2016;38:341-53.
- [27] Vijaya P, Raju G, Santhosh Kumar Ray. Artificial neural network-based merging score for Meta search engine. J Cent South Univ 2016;23:2604-15.
- [28] Lakshmiprabha NS, Bhattacharya J, Majumder S. Face recognition using multimodal biometric features, In: Image Information Processing (ICIIP), 2011 International Conference on, Himachal Pradesh, 2011:1-6.
- [29] De Marsico M, Nappi M, Riccio D, Wechsler H. Robust face recognition after plastic surgery using region-based approaches, Pattern Recogn 2015;48:1261-76.
- [30] Lee J, Mathews VJ. A stability result for RLS adaptive bilinear filters. IEEE Signal Process Lett 1994;1:191-3.
- [31] Sruthy BS, Jayasree M. Recognizing surgically altered face images and 3D facial expression recognition. Proc Technol 2016;24:1300-4.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7a6f408-499c-45ca-8bbf-16bb11ea2828