PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This study is to reveal the deformation of intervertebral disc (IVD), the stress distribution of solid phase and liquid phase, the variation of fluid flux and flow velocity in lumbar spine and the influence of different permeability parameters on them under intermittent compressive loading. Methods: A poroelastic FEM of L4-L5 is assigned with different permeability parameters to analyze the deformation, stress distribution and fluid convection under intermittent compressive loads. Results: The results show that the pore pressure of IVD decreases with time, but the effective stress increases under intermittent compressive loads. The axial and radial strain will increase and fluid loss will recover at a more rapid rate if the permeability of endplate increases during unloading period. The velocity vectors show that most of the liquid in the disc flows into vertebrae through endplates and only a small quantity of liquid flows through the annulus fibrosus at the loading step, however, at the unloading step, almost all the liquid flowing into IVD is through the endplates. Conclusions: The changing rate of pore pressure and effective stresses of nucleus pulposus and annulus fibrosus with higher permeability is smaller than that with smaller permeability. The degenerated endplate (with low permeability) yields high flow velocity decreasing gradient, which might impede liquid inflowing/outflowing smoothly through the endplates. The fluid flowing velocity in loading phase is faster than that in unloading phase, so a short resting time can relieve fatigue, but could not recover to the original liquid condition in IVDs.
Rocznik
Strony
19--29
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
autor
  • Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Bibliografia
  • [1] ADAMS M.A., MCMILLAN D.W., GREEN T.P., DOLAN P., Sustained loading generates stress concentrations in lumbar intervertebral discs, Spine (Phila Pa 1976), 1996, Vol. 21, 434–438.
  • [2] ALDRIDGE J.S., RECKWERDT P.J., MACKIE T.R., A proposal for a standard electronic anthropomorphic phantom for radiotherapy, Med. Phys., 1999, Vol. 26(9), 1901–1903.
  • [3] ARGOUBI M., SHIRAZI-ADL A., Poroelastic creep response analysis of a lumbar motion segment in compression, J. Biomech., 1996, Vol. 29, 1331– 1339.
  • [4] AYOTTE D.C., ITO K., TEPIC S., Direction-dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study, J. Orthop. Res., 2001, Vol. 19, 1073–1077.
  • [5] BORKOWSKI P., MAREK P., KRZESINSKI G., RYSZKOWSKA J., WASNIEWSKI B., WYMYSLOWSKI P., ZAGRAJEK T., Finite element analysis of artificial disc with an elastomeric core in the lumbar spine, Acta of Bioengineering and Biomechanics, 2012, Vol. 14(1), 59–66.
  • [6] CHAGNON A., AUBIN C.E., VILLEMURE I., Biomechanical Influence of Disk Properties on the Load Transfer of Healthy and Degenerated Disks Using a Poroelastic Finite Element Model, ASME Journal of Biomechanical Engineering, 2010, Vol. 132(11), No. 1111006-1-7
  • [7] CHEUNG J.T.M., ZHANG M., CHOW D.H.K., Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study, Clinical Biomechanics, 2003, Vol. 18, 790–799.
  • [8] FERGUSON S.J., ITO K., NOLTE L.P., Fluid flow and convective transport of solutes within the intervertebral disc, J. Biomech., 2004, Vol. 37(2), 213–221.
  • [9] FROBIN W., BRINCKMANN P., BIGGEMANN M., TILLOTSON M., BURTON K., Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine, Clin. Biomech. (Bristol, Avon), 1997, Vol. 12, 1–63.
  • [10] GOHARI E., NIKKHOO M., HAGHPANAHI M., PARNIANPOUR M., Analysis of different material theories used in a FE model of a lumbar segment motion, Acta of Bioengineering and Biomechanics, 2013, Vol. 15(2), 33–41.
  • [11] GU W.Y., MAO X.G., FOSTER R.J. et al., The anisotropic hydraulic permeability of human lumbar annulus fibrosus. Influence of age, degeneration, direction, and water content, Spine, 1999, Vol. 24(23), 2449–2455.
  • [12] GUO L.X., ZHANG M., TEO E.C., Influences of denucleation on contact force of facet joints under whole body vibration, Ergonomics, 2007, Vol. 50(7), 967–978.
  • [13] GUO L.X., ZHANG Y.M., ZHANG M., Finite element modeling and modal analysis of the human spine vibration configuration, IEEE Transactions on Biomedical Engineering, 2011, Vol. 58(10), 2987–2990.
  • [14] HUSSAINA M., NATARAJAN R.N., CHAUDHARYD G., AN H.S., ANDERSSON G.B.J., Relative contributions of strain-dependent permeability and fixed charged density of proteoglycans in predicting cervical disc biomechanics: A poroelastic C5-C6 finite element model study. Medical Engineering & Physics, 2011, Vol. 33, 438–445.
  • [15] JARAMILLO H.E., GOMEZ L., GARCIA J.J., A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs, Acta of Bioengineering and Biomechanics, 2015, Vol. 17(2), 15–24.
  • [16] LEE K.K., TEO E.C., Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear, Journal of Spinal Disorders & Techniques, 2004, Vol. 17(5), 429–438.
  • [17] LU Y.M., HUTTON W.C., GHARPURAY V.M., Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model, Spine, 1996, Vol. 21(22), 2570–2579.
  • [18] MACLEAN J.J., OWEN J.P., IATRIDIS J.C., Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs, J Biomech, 2007, Vol. 40, 55–63.
  • [19] MROZ A., SKALSKI K., WALCZYK W., New lumbar disc endoprosthesis applied to the patient's anatomic features, Acta of Bioengineering and Biomechanics, 2015, Vol. 17(2), 25–34.
  • [20] NATARAJAN R.N., WILLIAMS J.R., LAVENDER S.A., ANDERSSON G.B.J., Poro-elastic finite element model to predict the failure progression in a lumbar disc due to cyclic loading, Computers and Structures, 2007, Vol. 85, 1142– 1151.
  • [21] PAWLIKOWSKI M., SKALSKI K., SOWINSKI T., Hyper-elastic modelling of intervertebral disc polyurethane implant, Acta of Bioengineering and Biomechanics, 2013, Vol. 15(2), 43– 50.
  • [22] PRZYBYLA A., POLLINTINE P., BEDZINSKI R., Outer annulus tears have less effect than endplate fracture on stress distributions inside intervertebral discs: Relevance to disc degeneration, Clinical Biomechanics, 2006, Vol. 21(10), 1013– 1019.
  • [23] SCHMIDT H., SHIRAZI-ADL A., GALBUSERA F., WILKE H.J., Response analysis of the lumbar spine during regular daily activities – A finite element analysis, Journal of Biomechanics, 2010, Vol. 43, 1849–1856.
  • [24] SCHROEDER Y., HUYGHE J.M., VAN DONKELAAR C.C., ITO K., A biochemical/biophysical 3D FE intervertebral disc model, Biomech. Model. Mechanobiol. 2010, Vol. 9, 641–650.
  • [25] SHIRAZI-ADL A., PARNIANPOUR M., Load-bearing and stress analysis of the human spine under a novel wrapping compression loading, Clinical Biomechanics (Bristol, Avon), 2000, Vol. 15(10), 718–725.
  • [26] SMITH L.J., FAZZALARI N.L., The Elastic Fibre Network of the Human Lumbar Anulus Fibrosus: Architecture, Mechanical Function and Potential Role in the Progression of Intervertebral Disc Degeneration, European Spine Journal, 2009, Vol. 18(4), 439–448.
  • [27] URBAN J.P., MCMULLIN J.F., Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration, Spine, 1988, Vol. 13, 179–87.
  • [28] VAN DER VEEN A.J., MULLENDER M., SMIT T.H., KINGMA I., DIEEN J.H., Flow-related mechanics of the intervertebral disc: the validity of an in vitro model, Spine, 2005, Vol. 30(18), E534–539.
  • [29] WILKE H.J., NEEF P., CAIMI M., HOOGLAND T., CLAES L.E., New in vivo measurements of pressures in the intervertebral disc in daily life, Spine, 1999, Vol. 24(8), 755–762.
  • [30] WU J.S.S., CHEN J.H., Clarification of the mechanical behavior of spinal motion segments through a three-dimensional poroelastic mixed finite element model, Med. Eng. Phys., 1996, Vol. 18(3), 215–244.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7a53cbc-2062-4c60-b9a0-7bf821bd799b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.