PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examinations of Polish brown and hard coals in terms of their use in the steam gasification process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania polskich węgli brunatnych i kamiennych w kontekście ich zastosowania w procesie zgazowania parą wodną
Języki publikacji
EN
Abstrakty
EN
In order to determine the suitability of Polish coals for steam gasification, five Polish hard coals and three brown coals, which are used for power and heat production, were examined in this work. The examinations of the process of steam gasification were conducted with the use of a laboratory plant which allows for measurements within a broad pressure range with the thermovolumetric method. Reactivity evaluations for the examined coals were conducted on the basis of an analysis of the shape of the kinetic curves of formation of major gasification products and a comparison of the curves of the carbon conversion degree of the examined raw materials. In order to evaluate the reactivity of the examined coals, the following factors were utilized: a comparison of the shape of the curves of the carbon conversion degree and the maximal value of the carbon conversion degree, the time of partial conversion τ0.5, the reactivity index R0.5, as well as the reaction rate constant of carbon conversion. The yields, composition and calorific value of the resulting gas were determined as well as the reaction rate constants of formation of particular gaseous products of gasification. Additionally, for the examined coals, ash fusibility and the content of selected impurities, e.g. sulfur, chlorine and mercury, were given.
PL
W pracy, w celu określenia przydatności polskich węgli dla potrzeb procesu zgazowania parą wodną, przebadano pięć polskich węgli kamiennych i trzy brunatne stosowane do wytwarzania energii elektrycznej i ciepła. Badania procesu zgazowania parą wodną przeprowadzono na instalacji badawczej, która umożliwia pomiary w szerokim zakresie ciśnień metodą termowolumetryczną. Oceny reaktywności badanych węgli przeprowadzono, opierając się na przebiegu krzywych kinetycznych wydzielania się głównych produktów zgazowania oraz porównując krzywe stopnia konwersji pierwiastka C w badanych surowcach. Dla oceny reaktywności badanych węgli wykorzystano: porównanie przebiegu krzywych stopnia konwersji pierwiastka C oraz maksymalnego stopienia konwersji, czas połowicznej konwersji τ0,5, indeks reakcyjności R0,5 oraz stałą szybkości konwersji pierwiastka C. Wyznaczono również uzyski i skład wytwarzanego gazu, a także obliczono stałe szybkości tworzenia się poszczególnych produktów gazowych zgazowania. Dodatkowo dla analizowanych węgli podano temperatury topliwości popiołu oraz zawartość wybranych zanieczyszczeń: siarki, chloru i rtęci.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow
Bibliografia
  • [1] Ariyapadi et al. 2008 – Ariyapadi, S., Shires, P., Bhargava, M. and Ebbern, D. 2008. KBR’s Transport Gasifier (TRI GTM) – an advanced gasification technology for SNG production from low-rank coals. 25th Annual Internationa Pittsburgh Coal Conference. Pittsburgh PA, 29 September–2 October 2008.
  • [2] Burmistrz et al. 2014 – Burmistrz, P., Czepirski, L., Kogut, K. and Strugała, A. 2014. Removing mercury from flue gases. A demo plant based on injecting dusty sorbents. Przem. Chem. 93(12), pp. 2014–2019 (in Polish).
  • [3] Chmielniak, T. 2008. Coal gasification, State of technological development [In:] Borowiecki T., Kijeński J., Machnikowski J. and Ściążko M. ed. Clean Energy, chemical products and fuels from coal – an evaluation of Development Potential. Zabrze: IChPW, pp. 94–111 (in Polish).
  • [4] Chmielniak, T. 2011. Reduction of mercury emissions to the atmosphere from coal combustion processes using low temperature pyrolysis – a concept of process implementation on a commercial scale. Rynek Energii 93(2), pp. 176–181.
  • [5] Chmielniak et al. 2014 – Chmielniak, T., Bigda, J., Czardybon, A., Popowicz, J. and Tomaszewicz, G. 2014. Technologies for syngas cleaning produced from the coal gasification. Przem. Chem. 93(2), pp. 232–242 (in Polish).
  • [6] Collot A.G. 2006. Matching gasification technologies to coal properties. International Journal of Coal Geology 65, pp. 191–212.
  • [7] Coetzee et al. 2013 – Coetzee, S., Neomagus, H.W.J.P., Bunt, J.R. and Everson, R.C. 2013. Improved reactivity of large coal particles by K2CO3 addition during steam gasification. Fuel Processing Technology 114, pp. 75–80.
  • [8] Czerski et al. 2014 – Czerski, G., Dziok, T., Strugała, A. and Porada, S. 2014. Suitability of coal gasification technologies for the chemical industry. Przem. Chem. 93(8), pp. 1393–1400 (in Polish).
  • [9] Darby, A. 2014. Compact gasification integration studies. Gasification Technology Conference, Washington DC, 27 October 2014.
  • [10] Dreszer, K. and Więcław Solny, L. 2007. Coal gasification and liquid fuels synthesis. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 23(3), pp. 93–104 (in Polish).
  • [11] Dziok et al. 2014 – Dziok, T., Strugała, A., Rozwadowski, A. and Okońska, A. 2014. Effect of selected parameters of thermal pretreatment of bituminous coal on the mercury removal efficiency. Przem. Chem. 93(12), pp. 2034–2037 (in Polish).
  • [12] Dziok et al. 2015 – Dziok, T., Strugała, A., Rozwadowski, A. and Macherzyński, M. 2015. Studies of the correlation between mercury content and the content of various forms of sulfur in Polish hard coals. Fuel 159, pp. 206–213.
  • [13] Everson et al. 2006 –Everson, R.C., Neomagus, H.W.J.P., Kasaini, H. and Njapha, D. 2006. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: Gasification with carbon dioxide and steam. Fuel 85, pp. 1076–1082.
  • [14] GTI: The GTI Gasification Proccess. [Online] Available at: http://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/gasification/gasifipedia/GTI GasificationProcess9_18_07.pdf [Accessed: 5.02. 2016].
  • [15] Higman, C. 2014. State of the gasification industry – Worldwide Gasification Database 2014 Update. Gasification Technology Conference, Washington DC, 29 October 2014.
  • [16] Howard, W. 2013. Westinghouse plasma gasification – industrial scale syngas production from waste products. Gasification Technologies Conference, Colorado Springs CO, 13–16 October 2013.
  • [17] Li, C. and Li, C.-Z. 2006. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VIII . Catalysis and changes in char structure during gasification in steam. Fuel 85, pp. 1518–1525.
  • [18] Matsuoka et al. 2009 – Matsuoka, K., Kajiwara, D., Kuramoto, K., Sharma, A. and Suzuki, Y. 2009. Factors affecting steam gasification rate of low rank coal char in a pressurized fluidized bed. Fuel Processing Technology 90, pp. 895–900.
  • [19] Mazurkiewicz et al. 2012 – Tkaczewska, E., Pomykła, R. and Uliasz-Bocheńczyk, A. 2013. Preliminary determination of the suitability of slags resulting from coal gasification as a pozzolanic raw material. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 28(4), pp. 5–14.
  • [20] Mazurkiewicz et al. 2013 – Mazurkiewicz, M., Malta, G. and Uliasz-Bocheńczyk, A. 2013. Characteristics of selected wastes from carbon gasification. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 29(4), pp. 119–128.
  • [21] Molina, A. and Mandragon, F. 1998. Reactivity of coal gasification with steam and CO2. Fuel 77, pp. 1831–1839.
  • [22] Murakami et al. 2015 – Murakami, K., Sato, M., Tsubouchi, N., Ohtsuka, Y. and Sugawara, K. 2015. Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material. Fuel Processing Technology 129, pp. 91–97.
  • [23] Peng et al. 1995 –Peng, F.F., Lee, I.C. and Yang, R.Y.K. 1995. Reactivities of in situ and ex situ coal chars during gasification in steam at 1000–1400°C. Fuel Processing Technology 41, pp. 233–251.
  • [24] Porada, S. and Rozwadowski, A. 2014. Kinetic study of steam gasification of bituminous coal at elevated pressures. Przem. Chem. 93(12), pp. 2059–2063 (in Polish).
  • [25] Porada et al. 2014a – Porada, S., Czerski, G., Dziok, T., Grzywacz, P. and Makowska, D. 2014. Comparison of steam gasification kinetics of coal and its char. Przem. Chem. 93(12), pp. 384–387 (in Polish).
  • [26] Porada et al. 2014 b. – Porada, S., Grzywacz, P., Czerski, G., Kogut, K. and Makowska, D. 2014. Assessment of Polish coals suitability for gasification process. Polityka energetyczna – Energy Policy Journal 17(4), pp. 89–102.
  • [27] Porada et al. 2015 – Porada, S., Czerski, G., Dziok, T., Grzywacz, P. and Makowska, D. 2015. Kinetics of steam gasification of bituminous colas in terms of their use for underground coal gasification. Fuel Processing Technology 130, pp. 282–291.
  • [28] Sharma et al. 2008 – Sharma, A., Takanohashi, T. and Saito, I. 2008. Effect of catalyst addition on gasification reactivity of HyperCoal and coal with steam at 775–700°C. Fuel 87, pp. 2686–2690.
  • [29] Smoliński, A. 2011. Coal char reactivity as a fuel selection criterion for coal-based hydrogen-rich gas production in the process of steam gasification. Energy Conversion and Management 52, pp. 37–45.
  • [30] Strugała, A. and Czerski, G. 2012. Studies on coal gasification in Poland. Przem Chem. 91(11), pp. 2181–2185 (in Polish).
  • [31] Wang et al. 2009 – Wang, J., Jiang, M., Yao, Y., Zhang, Y. and Cao, J. 2009. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel 88, pp. 1572–1579.
  • [32] Wang et al. 2010 – Wang, J., Yao, Y., Cao, J. and Jiang, M. 2010. Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation. Fuel 89(2), pp. 310–317.
  • [33] Wang, P. and Massoudi, M. 2013. Slag behavior in gasifiers. Part I: Influence of coal properties and gasification conditions. Energies 6, pp. 784–806.
  • [34] Wu et al. 2003 – Wu, Z., Sugimoto, Y., Harada, M. nad Akimoto, A. 2003. Influence of coal rank and mineral matter on char gasification. 20th Annual International Pittsburgh Coal Conference. Pittsburgh, 15–19 September 2003.
  • [35] Yasushi et al. 2006 –Yasushi, S., Ishikawa, K., Kikuchi, E., Matsukata, M. and Akimoto, A. 2006. Reactivity and structural change of coal char Turing steam gasification. Fuel 85, pp. 122–126.
  • [36] Ye et al. 1998 – Ye, D.P., Agnew, J.B. and Zhang, D.K. 1998. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and studies. Fuel 77, pp. 1209–1219.
  • [37] Zhang et al. 2013 – Zhang, L.X., Kudo, S., Tsubouchi, N. and Hayashi, J.I. 2013. Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor. Fuel Processing Technology 113, pp. 1–7.
  • [38] Zheng L. and Furinsky E. 2005. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulation. Energy Conversion and Management 46, pp. 1767–1779.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7a4e0d2-62d0-447e-925c-cbb33ec9e701
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.