Identyfikatory
Warianty tytułu
Realization of low pass parametric filters
Języki publikacji
Abstrakty
W artykule przedstawiono realizacje dolnoprzepustowych filtrów o parametrach zmiennych w czasie. Strukturę filtru pierwszego rzędu zbudowano na bazie układu mnożącego. Filtr drugiego rzędu opracowano na bazie sekcji bikwadratowych. Przyjęto eksponencjalnie zmienny w czasie przebieg zmian parametrów filtrów. Uzyskane wyniki zilustrowano przykładami.
The article presents practical realization of low pass time-varying filters. The structure of first order filter is created based on multiplier. The second order filler is build based on biquadrate structure. The exponential waveform of variable coefficients is assumed. The obtained results are verified by examples
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--50
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Politechnika Śląska, Katedra Elektrotechniki i Informatyki, ul. Akademicka 10, 44-100 Gliwice
Bibliografia
- [1]. Erfani S., Bayan N.: On linear time-varying system characterizations, IEEE Int. Conf. on Electro/Information Technology (2009), pp. 207 - 210
- [2]. Koksal M, Koksal M.E.: Commutativity of linear time-varying differential systems with nonzero initial conditions: a review and some new extensions. Mathematical Problems in Engineering, vol. 2011 (2011), Article ID 678575,. doi:10.1155/2011/678575
- [3]. D’Angelo H.: Linear time-varying systems. analysis and synthesis, Allyn and Bacon, Inc. Boston, (1970)
- [4]. Richards J. A.: Analysis of periodically time-varying systems, Springer-Verlag Berlin Heidelberg, New York, (1983)
- [5]. Kaczorek T.: Positive and stable time-varying continuous-time linear systems and electrical circuit, Poznan University of Technology Academic Journals of Electrical Engineering (2016) no 81, pp. 11-19
- [6]. Shimaliy Y.: Continuous-Time Systems, Springer Science & Business Media (2007)
- [7]. Cheeran N., Pandey P. C.: Optimizing the sweep cycle of timevarying comb filters for binaural dichotic presentation in sensor neural hearing impairment, 14th Int. Conf. on Digital Signal Processing (2002) vol. 2 pp.1145 – 1148
- [8]. Zhang H., Guoan B., Zhao L., Razul S.G., See C.-M.S.: Time varying filtering and separation of nonstationary FM signals in strong noise environments. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (2014) pp. 4171 - 4175
- [9]. Schnell K., Lacroix A.: Model-based analysis of speech and audio signals for real-time processing based on time-varying lattice filters, IEEE Int. Conf. on Acoustics, Speech and Signal Processing (2009) pp. 3973 – 3976
- [10]. Jaskuła M., Kaszyński R.: Using the parametric time-varying analog filter to average-evoked potential signals IEEE Trans. on Instrumentation and Measurement (2004) vol. 52, no 3, pp. 709-715
- [11]. Kaszyński R., Piskorowski J.: Bessel filters with varying parameters, Proc of the IEEE Conf. Instrumentation and Measurement Technology (2005) vol.1, pp.757-761
- [12]. Kaszyński R., Piskorowski J.: Selected structures of filters with time-varying parameters, IEEE Trans. on Instrumentation and Measurement, (2007) vol.56, no.6, pp.2338-2345
- [13]. Grabowski D., Maciążek M., Pasko M., Piwowar A.: Timeinvariant and time-varying filters versus neural approach applied to DC component estimation in control algorithms of active power filters. Applied Mathematics and Computation (2018) vol. 319, pp. 203-217
- [14]. Ou B., Liu D.: Chaotic attractor generation via a simple linear time-varying system, Discrete Dynamics in Nature and Society (2010), article ID 840346, 9 pages, doi:10.1155/2010/840346
- [15]. Kluszczyński K., Domin J.: Two module electromagnetic launcher with pneumatic assist modeling, computer simulations and laboratory investigations, COMPEL (2015) vol. 34 no. 3, pp. 691-709
- [16]. Jskuła M., Averaging brainstem auditory evoked potentials with parametric filter. 2000, Conf.: Methods and models in automation and robotics (2000) vol. 2, pp. 961–964
- [17]. Walczak J., Romanowska A.: Analysis of second order LTV section with exponentially varying parameters, Przegląd Elektrotechniczny (2007) no 2, pp: 106-109
- [18]. Neerchoff F.L., van der Kloet P.: A complementary view on time - varying systems. Proc. ISCAS, Sydney (2001) vol. III, pp. 779-782
- [19]. Zhu J.J.: A Unified Spectral Theory for Linear Time-Varying Systems, Progress and Challenges, Proc. of 34th Conf. on Decision and Control, New Orlean, LA (1995), pp. 2540-2546
- [20]. Bayan N., Erfani S.: Frequency analysis of time varying systems, IEEE Conf. of Electro/Information Technology, Ontario (2006), pp. 33-36
- [21]. Sandberg I. W.: Realization of a class of periodically variable systems, IRE Trans. on Circuit Theory (1962) vol.9, no.4, pp. 416- 417
- [22]. Polyanin A. D., Zaitsev, V. F.: Handbook of exact solutions for ordinary differential equations, 2nd Edition, Chapman & Hall/CRC, (2003) Boca Raton
- [23]. Piwowar A., Walczak J.: Impulse responses of generalized first order LTV sections, Lect. Notes Electrical Eng. Book Title: Analysis and Simulation of Electrical and Computer Systems, Springer, (2014) vol. 324, chapter 6, pp. 73-79
- [24]. Chen W. K.: The circuits and filters handbook, IEEE Press, New York (1995).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7a4b25c-3434-4dc2-816c-b5eed799e37e