PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of X-ray tomography to assess fatigue structural changes in asphalt mixtures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an analysis of the change in air voids in asphalt mixtures subjected to fatigue tests at three temperatures of 0°C, 10°C and 25°C. The X-ray computerized tomography imaging method, XCT, was used to identify the air voids in the samples. The research allowed to determine changes in the content of air voids in subsequent fatigue cycles in the sample area. The relationship between air voids volume and the stiffness modulus value was also determined during fatigue for three temperatures. The largest changes were found in samples with notches at 0°C. The analysis of the change in the content of air voids showed that the micro-cracking nucleation processes develop with the number of fatigue cycles. Using the numerical model finite element method we determined the distribution and change in fatigue damage in the extreme areas of the sample during various stages of fatigue. We found clear relationship between the damage and the increased content of air voids.
Słowa kluczowe
Rocznik
Strony
307--315
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
autor
  • Faculty of Civil Engineering, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
Bibliografia
  • [1] A. Tayebali, J. Deacon, J. Coplantz, F. Finn, and C. Monismith, “Fatigue Response of Asphalt-Aggregate Mixes”, Report, SHRP-A-404, National Research Council, Washington, D.C., 1994.
  • [2] D. Little, “Investigation of Microdamage Healing in Asphalt and Asphalt Concrete. Task K”, Semi-Annual Technical Report Western Research Institute, FHW A Project DTFH61-92-C-00170-Fundamental Properties of Asphalt and Modified Asphalt, 1995.
  • [3] AASHTO Designation: TP8‒94. “Standard Test Method for Determining the Fatigue Life of Compacted Hot Mix Asphalt (HMA) Subjected to Repeated Flexural Bending”, 2010.
  • [4] A. Tayebali, G. Rowe, and J. Sousa, “fatigue response of asphalt-aggregate mixtures”, J. of the Association of Asphalt Paving Technologists, 61, 333–360 (1992).
  • [5] W. Van Dijk, “Practical fatigue characterization of bituminous mixes”, Proc. of the Assoc. of Asphalt Paving Technol., 38 (1975).
  • [6] G. Chomton and P. Valayer, “Applied rheology of asphalt mixes-practical applications”, Proc., Third Int. Conf. on the Structural Design of Asphalt Pavements, London, England, 214–225 (1972).
  • [7] W. Van Dijk, H. Moreaud, A. Quedeville, and P. Uge, “The fatigue of bitumen and bituminous mixes”, Third Int. Conf. on Structural Design of Asphalt Pavements, London, 1972.
  • [8] A. Pronk, “Fatigue lives of asphalt beams in 2 and 4 point dynamic bendings tests based on a new fatigue life definition using the dissipated energy concept. Controlled displacement mode”, DWW, 1997.
  • [9] G. Rowe, “Performance of asphalt mixtures in the trapezoidal fatigue test”, Proc. of the Assoc. of Asph. Pav. Techn., 62, 344–384 (1993).
  • [10] Z.Q. Yue, W. Bekking, and I. Morin, “Application of Digital Image Processing to Quantitative Study of Asphalt Concrete Microstructure”, Transp. Res. Rec. 1492, 53–60 (1995).
  • [11] D. Presti, N. Hassan, R. Khan, and G. Airey, “Reclaimed asphalt test specimen preparation assisted by image analysis”, J. of Mater. in Civil Eng., 27 (8), (2015).
  • [12] H. Wang, R. Zhang, Yu Chen, Z. You, and J. Fang, “Study on microstructure of rubberized recycled hot mix asphalt based X-ray CT technology”, Constr. and Build. Mater., 121, 177–184 (2016).
  • [13] J. Król, “Study of compaction homogeneity of asphalt concrete based on image analyses”, Roads and Bridges, 1 (13), 69–85 (2014).
  • [14] E. Masad, B. Muhunthan, N. Shashidhar, and T. Harman, “Internal structure characterization of asphalt concrete using image analysis”, J. of Comp. in Civil Eng. (Special Iss. on Image Processing) 1 (2), 88–95 (1999).
  • [15] L. Tashman, E. Masad, J. D’angelo, J. Bukowski, and J. Harman, “X-Ray tomography to characterize air void distribution in superpave gyratory-compacted specimens”, Inter. J. of Pavement Eng., 3 (1), 19–28 (2002).
  • [16] Z. Chen, W. Hainian, Y. Zhanping, and Y. Xu, “Compaction characteristics of asphalt mixture with different gradation type through Superpave Gyratory Compaction and X-Ray CT Scanning”, Constr. and Build. Mater., 129, 243–255 (2016).
  • [17] Xu Huining, Tan Yiqiu, and Yao Xingao, “X-ray computed tomography in hydraulics of asphalt mixtures: Procedure, accuracy, and application”, Constr. and Build. Mater. 108, 10–21 (2016).
  • [18] S. Kose, M. Guler, H.U. Bahia, and E. Masad, “Distribution of strains within hot-mix asphalt binders”, Transportation Research Record: J. of the Transp. Res. Board, 1391, Washington, D.C., TRB, National Research Council, 21–27 (2000).
  • [19] E. Masad, N. Somadevan, H.U. Bahia, and S. Kose, “Modeling and experimental measurement of strain distribution in asphalt mixes”, J. of Transp. Eng. 127 (6), 477–485 (2001).
  • [20] L. Wang, J. Frost, and J. Lai, “Three-dimensional digital representation of granular material microstructure from X-ray tomography”, J. of Comp. Eng. 18 (1), 28–35 (2004).
  • [21] L. Wang, J. Frost, and N. Shashidhar, “Microstructure study of Westrack mixes from X-ray tomography images”, Transportation Research Record 1767, 85–94 (2001).
  • [22] L. Wang, J. Frost, G. Voyiadjis, and T. Harman, “Quantification of damage parameters using X-ray tomography images”, Mech. of Mater. 35, 77–790 (2003).
  • [23] A. Zofka, M. Paliukaitė, A. Vaitkus, and D. Maliszewska, “Laboratory study on the influence of casting on properties of ultra-high performance fibre reinforced concrete (UHPFRC) specimens”, J. of Civil Eng. and Manag., 20 (3), 380–388 (2014).
  • [24] H. Norrison, “Modelling of micro-cracks in thin asphaltic concrete pavements on urban local roads”, Dissertation, Swinburne University of Technology, 2002.
  • [25] H. Norrison, “Modelling sub-surface cracks in thin AC surfacings for urban local roads”, 3rd International Conference, Bituminous Mixtures and Pavements, Thessaloniki, Greece, 2002.
  • [26] M. Marasteanu, R. Velasquez, W. Herb, J. Tweet, T. Mugurel, W. Mark, and S.G. Heinz, “Determination of optimum time for the application of surface treatments to asphalt concrete pavements – phase II”, Final Report MN/RC 2008‒16, 2008.
  • [27] R. Botella and R. Miro, “Application of a strain sweep test to assess fatigue behavior of asphalt binders”, Constr. and Build. Mater., 36, 906–912 (2012).
  • [28] K. Kim and M. el Hussein, “Variation of fracture toughness of asphalt concrete under low temperatures”, Constr. and Build. Mater., 11 (7–8), 403–411 (1997).
  • [29] P. Mackiewicz, “Fatigue tests of bituminous mixtures with inclusion of initial cracks”, J. of Mater. in Civil Eng., 25 (1), 140–147 (2013).
  • [30] K. Mahboub, “Elasto-plastic fracture characterization of paving materials at low temperatures”, J. of Test. and Eval., 18 (3), 210–218 (1990).
  • [31] E. Rusiński, “Finite element method. System COSMOS/M”, Handbook, WKiŁ, Warszawa, 1994 (in Polish).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b799ef13-c624-4037-b027-cbb4e56f8479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.