PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Properties and Microstructure of the Plastically Deformed Alloy Inconel®718, Manufactured by Plastic Working and Direct Metal Laser Sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nickel superalloys as Inconel® are materials widely used in the aerospace industry among others for diffusers, combustion chamber, shells of gas generators and other. In most cases, manufacturing process of those parts are used metal strips, produced by conventional plastic processing techniques, and thus by hot or cold rolling. An alternative technology allowing for manufacturing components for jet engines is the technique of 3D printing (additive manufacturing), and most of all Direct Metal Laser Sintering, which is one of the latest achievement in field of additive technologies. The paper presents a comparative analysis of the microstructure and mechanical properties of the alloy Inconel®718 manufactured by plastic working and Direct Metal Laser Sintering technology, in the initial state, after deformation and after heat treatment.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30 - 059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30 - 059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30 - 059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30 - 059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30 - 059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30 - 059 Krakow, Poland
Bibliografia
  • [1] Q. Huan, Review of INCONEL 718 alloy: its history, properties, processing and developing substitutes, J. Mater. Eng. 8, 92-100 (2012).
  • [2] D. Dudzinski, A. Devilleza, A. Moufkia, D. Larrouquèreb, V. Zerroukib, J. Vigneaub, A review of developments towards dry and high speed machining of Inconel 718 alloy, Int. J. Machine Tools Manuf. 44, 439-456 (2004).
  • [3] D. F. Paulonis, J. J Schirra, Alloy 718 at Pratt & Whitney - historical perspective and future challenges, superalloys 718, 625, 706 and various derivatives, TMS (2001).
  • [4] S. Mrowec, T. Werber, Nowoczesne materiały żaroodporne, Wydawnictwa Naukowo- Techniczne, Warszawa, 1982.
  • [5] B. Mikułowski, Stopy żaroodporne i żarowytrzymałe. Nadstopy, Wydawnictwa AGH, Kraków, 1997.
  • [6] B. Dubiel, A. Czyrska-Filemonowicz, Żarowytrzymałe stopy umocnione dyspersyjnie cząstkami tlenków (stopy ODS), Inz. Mat. 21 20-28 (2000)
  • [7] C. T. Sims, N. S. Stoloff, W. C. Hagel, Superalloys II, Ed. J. Willey & Sons, New York 1987.
  • [8] J. Eiselstein, D. Pasquine, Phase transformation in nickel-base alloys, International Symposium on Structural Stability in Superalloys, Seven Springs, PA 1968.
  • [9] T. Drenger, J. Wiśniewski, S. Sosnowski, Ł. Nowacki, T. Gądek, Z. Ulatowski, Rozpoznawcze badania możliwości kształtowania metodami obróbki plastycznej elementów ze stopu niklu Inconel 625, Obróbka Plastyczna Metali 18, 15-22 (2007).
  • [10] A. Nowotnik, K. Kubiak, Wpływ parametrów odkształcania na procesy wydzieleniowe w nadstopie niklu typu Inconel, Hutnik - Wiadomości Hutnicze 75, 432-434 (2008).
  • [11] M. Pawlicki, Plastyczne kształtowanie metali w technologii zgniatania obrotowego, Kraków 2013.
  • [12] I. Dul, Zastosowanie i przetwarzanie stopów niklu w przemyśle lotniczym, PS 81, 67-70 (2009).
  • [13] O. Music, J. M. Allwood, K. Kawai, A review of the mechanics of metal spinning, J. Mater. Process. Technol. 210, 3-23 (2010).
  • [14] J. P. Kruth, M. C. Leu, T. Nakagawa, Progress in additive manufacturing and rapid prototyping, CIRP Ann. Manuf. Techn. 47 (1998) 525-540.
  • [15] A. Simchia, F. Petzoldt, H. Pohl, On the development of direct metal laser sintering for rapid tooling, J. Mater. Process. Technol. 141 319-328 (2003).
  • [16] D. Atkinson, Rapid Prototyping and Tooling, A Practical Guide, Strategy Publication Ltd., Welwyn Garden City, UK 1997.
  • [17] Information on http://www.eos.info/
  • [18] AMS 5662.
  • [19] A. A. Ammann, Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool, J. Mass Spectrom. 42, 419-427 (2007).
  • [20] R. Knochenmuss, Ion formation mechanisms in UV-MALDI, Analyst 131, 966-986 (2006).
  • [21] PN-EN ISO 6892-1:2009.
  • [22] PN-EN 10049:2008P.
  • [23] G. Vander Voort, Metallography of superalloys, Industrial Heating 70, 40-43 (2003).
  • [24] G. Appa Rao, K. Satya Prasad, M. Kumar, M. Srinivas, D. S. Sarma, Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, J. Mater. Sci. Technol. 19, 1-9 (2003).
  • [25] S. A. David, S. S. Babu, J. M. Vitek, Welding: Solidification and microstructure, JOM - J. Min. Met. Mat. Soc. 55, 14-20 (2003).
  • [26] K. A. Mumtaz, P. Erasenthiran, N. Hopkinson, High density selective laser melting of Waspaloy (R), J. Mater. Process. Tech. 195, 77-87 (2008)
  • [27] M. Dehmas, J. Lacaze, A. Niang, B. Viguier, TEM Study of high-temperature precipitation of delta phase in Inconel 718 alloy, Adv. Mater. Sci. Eng. 2011 (2011) 1-9.
  • [28] I. Kirman, D. H. Warrington, The precipitation of Ni3Nb phases in a Ni-Fe-Cr-Nb alloy, Metall. Mater. Trans. B 1, 2667-2675.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b79757f8-e4a6-49ba-a68b-f494b158e6aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.