PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drying Kinetic Behavior of Dried Salam Leaves (Syzygium polyanthum) Based on Forced Convective Solar Drying and Open Sun Drying

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salam leaves, a traditional food flavoring spice, are a widely recognized herb in Indonesia and are used in many regions. This study aimed to investigate the drying kinetics of salam leaves, comprising mathematical modeling, moisture diffusivity, and other nutritional values as qualitative parameters. The drying process was examined using a forced convective system (CSD) and open sun drying (OSD). The drying behavior was examined by observing the drying kinetics characteristics using 12 thin-layer semi-theoretical mathematical for drying of agricultural products, determining the moisture diffusivity, as well as measuring the content of chlorophyll a, b, and total dissolved solids as nutritional quality indicators of the drying products. According to the obtained results from the non-linear regression analysis, the Midilli model demonstrates the highest degree of appropriateness for drying salam leaves. The moisture diffusivity of CSD is greater than that of open-air solar drying. Regarding nutritional composition, the study revealed that chlorophyll a, b, and carotenoid levels in the dried leaves obtained through CSD were more significant than those obtained by OSD. As an environmentally friendly dryer, CSD can potentially be applied in herb-drying industries, especially salam leaves.
Słowa kluczowe
Twórcy
  • Departement of Agrotechnology,University of Islam Malang, Malang, East Java, Indonesia
Bibliografia
  • 1. Alwafa, R.A., Mudalal, S., & Mauriello, G. 2021. Origanum syriacum L. (Za’atar), from Raw to Go: A Review. Plants, 10 (5), 1001. https://doi.org/10.3390/plants10051001
  • 2. Babu, A.K., Kumaresan, G., Raj, V.A.A., & Velraj, R. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90, 536–556. https://doi.org/10.1016/j.rser.2018.04.002
  • 3. Bhaskara Rao, T.S.S., & Murugan, S. 2021. Solar drying of medicinal herbs: A review. Solar Energy, 223, 415–436. https://doi.org/10.1016/j.solener.2021.05.065
  • 4. Chaurasiya, V., & Singh, J. 2022. An analytical study of coupled heat and mass transfer freeze-drying with convection in a porous half body: A moving boundary problem. Journal of Energy Storage, 55, 105394. https://doi.org/10.1016/j.est.2022.105394
  • 5. D. Pagukuman, B.N., & Wan Ibrahim, M.K. 2022. A review of the significance effect of external factors of the solar dyer design to dried foods product quality. Journal of Engineering, Design and Technology, 20(6), 1765–1786. https://doi.org/10.1108/JEDT-01-2021-0033
  • 6. Dewijanti, I.D., Mangunwardoyo, W., Artanti, N., & Hanafi, M. (2019). Bioactivities of salam leaf (Syzygium polyanthum (wight) walp). AIP Conference Proceedings, 2168(1).
  • 7. Dewijanti, I., Mangunwardoyo, W., Dwiranti, A., Hanafi, M., & Artanti, N. (2020). Effects of the various source areas of Indonesian bay leaves (Syzygium polyanthum) on chemical content and antidiabetic activity. Biodiversitas Journal of Biological Diversity, 21(3).
  • 8. Essalhi, H., Tadili, R., & Bargach, M.N. (2017). Conception of a Solar Air Collector for an Indirect Solar Dryer. Pear Drying Test. Energy Procedia, 141, 29–33. https://doi.org/10.1016/j.egypro.2017.11.114
  • 9. Fillet, R., Nicolas, V., Fierro, V., & Celzard, A. 2021. A review of natural materials for solar evaporation. Solar Energy Materials and Solar Cells, 219, 110814.
  • 10. Hawa, L.C., Ubaidillah, U., Mardiyani, S.A., Laily, A.N., Yosika, N.I.W., & Afifah, F.N. 2021. Drying kinetics of cabya (Piper retrofractum Vahl) fruit as affected by hot water blanching under indirect forced convection solar dryer. Solar Energy, 214, 588–598. https://doi.org/10.1016/j.solener.2020.12.004
  • 11. Hidar, N., Ouhammou, M., Mghazli, S., Idlimam, A., Hajjaj, A., Bouchdoug, M., Jaouad, A., & Mahrouz, M. (2020). The impact of solar convective drying on kinetics, bioactive compounds and microstructure of stevia leaves. Renewable Energy, 161, 1176–1183. https://doi.org/10.1016/j.renene.2020.07.124
  • 12. Karami, H., Lorestani, A.N., & Tahvilian, R. (2021). Assessment of kinetics, effective moisture diffusivity, specific energy consumption, and percentage of thyme oil extracted in a hybrid solar‐electric dryer. Journal of Food Process Engineering, 44(1). https://doi.org/10.1111/jfpe.13588
  • 13. Karwacka, M., Ciurzyńska, A., Galus, S., & Janowicz, M. (2022). Freeze-dried snacks obtained from frozen vegetable by-products and apple pomace – Selected properties, energy consumption and carbon footprint. Innovative Food Science & Emerging Technologies, 77, 102949. https://doi.org/10.1016/j.ifset.2022.102949
  • 14. Lakshmi, D.V., Muthukumar, P., Ekka, J.P., Nayak, P.K., & Layek, A. (2019). Performance comparison of mixed mode and indirect mode parallel flow forced convection solar driers for drying Curcuma zedoaria. Journal of Food Process Engineering, 42(4), e13045.
  • 15. Mardiyani, S.A., Sumarlan, S.H., Argo, B.D., & Leksono, A.S. (2018). Design of eco-friendly fixed bed dryer based on a combination of solar collector and photovoltaic module.
  • 16. Mardiyani, S.A., Sumarlan, S.H., Argo, B.D., & Leksono, A.S. (2021). Determination of moisture diffusivity and activation energy on fixed bed drying of red pepper (Capsicum annum) on convective solar drying. Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering (AFSSAAE), 4(2), 110–116.
  • 17. Masaki, G., Santoso, F., & Puteri, M.D.G. (2022). Optimization of Aqueous Extraction of Indonesian Bay Leaf (Syzygium polyanthum Wight) as Powder Seasoning. 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021), 381–384.
  • 18. Midilli, A., & Kucuk, H. (2003). Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44(7), 1111–1122.
  • 19. Mohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K.S., Moses, J.A., & Anandharamakrishnan, C. (2020). Solar dryers for food applications: Concepts, designs, and recent advances. Solar Energy, 208, 321–344. https://doi.org/10.1016/j.solener.2020.07.098
  • 20. Pratama, B.P., Pranoto, Y., Supriyadi, S., & Swasono, R.T. (2022). Effect of Drying Time and Temperature to the Chemical Properties and Enzymatic Activities Related to the β-ocimene Production in Syzygium polyanthum Leaves. Trends in Sciences, 19(23), 1526. https://doi.org/10.48048/tis.2022.1526
  • 21. Schmid, B., Navalho, S., Schulze, P.S.C., Van De Walle, S., Van Royen, G., Schüler, L.M., Maia, I.B., Bastos, C.R.V., Baune, M.-C., Januschewski, E., Coelho, A., Pereira, H., Varela, J., Navalho, J., & Cavaco Rodrigues, A.M. (2022). Drying Microalgae Using an Industrial Solar Dryer: A Biomass Quality Assessment. Foods, 11(13), 1873. https://doi.org/10.3390/foods11131873
  • 22. Thamkaew, G., Sjöholm, I., & Galindo, F.G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763–1786.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b79356ec-750a-46a5-97c7-68b8add9474f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.