Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biostimulants are a broad group of numerous compounds that stimulate plant growth and increase plant resistance to environmental stresses. Pansies are in great demand, so new sustainability strategies for their production are still being sought. This study evaluated the effectiveness of partially hydrolyzed gellan gum (HGG) as a natural biostimulant for the production of high-quality pansy plants. In Experiment 1, the effects of drench concentrations of HGG (0, 25, 50, and 100 mg·dm–3) on morphological and physiological parameters of two pansy cultivars were investigated. In Experiment 2, the objective of study was to determine the effect of HGG on growth, flowering and leaf physiology of pansy grown under increasing sodium chloride (NaCl) concentrations (50 and 200 mM). Our results showed in both cultivars growth-promoting effects of HGG, and 100 mg·dm–3 of HGG was the most effective concentration. The increasing salinity imposed as NaCl negatively affected the growth, flowering, visual appearance, relative chlorophyll content (SPAD), stomatal conductance, and chlorophyll fluorescence (Fv/Fm) of plants. However, HGG pretreatment alleviated the adverse effects of salt stress mainly by reducing the decrease of SPAD, Fv/Fm, flower number and biomass in salt-stressed plants at 200 mM NaCl. Overall results indicated that eco-friendly HGG at the proper dose could be used as a tool to enhance growth, flowering and salt stress tolerance in pansy plants.
Czasopismo
Rocznik
Tom
Strony
214--220
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Horticulture, The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Poland
autor
- Department of Horticulture, The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Polan
autor
- Department of Agroengineering, Division of Irrigation, The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Poland
autor
- Department of Horticulture, The Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Poland
Bibliografia
- 1. Awad-Allah E.F., Attia M.G., Mahdy A.M. 2020. Salinity stress alleviation by foliar bio-stimulant, proline and potassium nutrition promotes growth and yield quality of garlic plant. Open J. Soil Sci. 10, 443–458. DOI: 10.4236/ojss.2020.109023.
- 2. Choudhary S., Sharma K., Bhatti M.S., Sharma V., Kumar V. 2022. DOE-based synthesis of gellan gum-acrylic acid-based biodegradable hydrogels: screening of significant process variables and in situ field studies. RSC Adv. 12, 4780–4794. DOI: 10.1039/D1RA08786J
- 3. de Oliveira I., Chrysargyris A., Finimundy T.C., Carocho M., Santos-Buelga C., Calhelha R.C., Tzortzakis N., Barros L., Heleno S.A. 2024. Magnesium and manganese induced changes on chemical, nutritional, antioxidant and antimicrobial properties of the pansy and Viola edible flowers. Food Chemistry, 438 (9), 137976. DOI: 10.1016/j.foodchem.2023.
- 4. Dev M.J., Warke R.G., Warke G.M., Mahajan G.B., Patil T.A., Singhal R.S. 2022. Advances in fermentative production, purification, characterization and applications of gellan gum. Bioresour. Technol. 359, 127498. DOI: 10.1016/j.biortech/2022.
- 5. Douglas T.E.L., Keppler J.K., Vandrovcová M., Plencner M., Beranová J., Feuereisen M., Parakhonskiy B.V., Svenskaya Y., Atkin V., Ivanova A. 2020. Enhancement of biomimetic enzymatic mineralization of gellan gum polysaccharide hydrogels by plant-derived gallotannins. Int. J. Mol. Sci. 21, 2315. DOI: 10.3390/ijms21072315.
- 6. Francini A., Romano D., Toscano S., Ferrante A. 2022. The contribution of ornamental plants to urban ecosystem services. Earth. 3, 1258–1274. DOI: 10.3390/earth3040071 García-Caparrós P., Lao M.T. 2018. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 240, 430–439. DOI: 10.1016/j.scienta.2018.06.022.
- 7. Ishii Y., Takamura T., Goi M., Tanaka M. 1998. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep. 17, 446–450. DOI: 10.1007/ s002990050423.
- 8. Javadi F., Kalatejari S., Diyanat M. 2020. Effect of foliar or soil application of selenium on some morphological and physiological traits of garden pansy (Viola x wittrockiana Gams) grown under salinity stress. Acta Agric. Slov. 115, 357–368. DOI: 10.14720/aas.2020.115.2.1475.
- 9. Kikuchi S., Horiuchi A., Nishimoto Y., Iwamoto A. 2023. Different effects of gellan gum and agar on change in root elongation in Arabidopsis thaliana by polyploidization: the key role of aluminum. J. Plant Res. 136, 253–263. DOI: 10.1007/ s10265-023-01435-x.
- 10. Kocira A., Kocira S., Świeca M., Złotek U., Jakubczyk A., Kapela K. 2017. Effect of foliar application of a nitrophenolate–based biostimulant on the yield and quality of two bean cultivars. Sci. Hortic. 214, 76–82. DOI: 10.1016/j.scienta.2016.
- 11.021. 11. Li J., Hu L., Zhang L., Pan X., Hu X. 2015. Exogenous spermidine is enhancing tomato tolerance to salinity–alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol. 15, 1–17. DOI: 10.1186/ s12870-015-0699-7.
- 12. Liao Q., Gu S., Kang S., Du T., Tong L., Wood J.D., Ding R. 2022. Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. Sci. Total Environ. 805, 150364. DOI: 10.1016/j. scitotenv.2021.150364
- 13. Lichtenthaler H.K., Rinderle U. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. Critic. Rev. Anal. Chem. 19, 29–85.
- 14. Ma Y., Freitas H., Dias M.C. 2022. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front. Plant Sci. 13, 1024243. DOI: 10.3389/fpls.2022.
- 15. Matthews S., Ali A., Siddiqui Y., Supramaniam C.V. 2022. Plant bio-stimulant: Prospective, safe and natural resources. J. Soil Sci. Plant Nut. 22, 2570–2586. DOI: 10.1007/s42729-022-00828-6.
- 16. Moenne A., González A. 2021. Chitosan-, alginatecarrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydr. Res. 503, 108298. DOI: 10.1016/j.carres.2021.
- 17. Mpai S., Mokganya L.M., Raphoko L., Masoko P., Ndhlala A.R. 2022. Untargeted metabolites and chemometric approach to elucidate the response of growth and yield attributes on different concentrations of an amino acid based biostimulant in two lettuce cultivars. Sci. Hortic. 306(4), 111478. DOI: 10.1016/j.scienta.2022.111478.
- 18. Mystkowska I., Dmitrowicz A. 2024. Effect of biostimulants on the content and uptake of selected macronutrients in Jerusalem artichoke tubers (Helianthus tuberosus L.). J. Ecol. Eng. 25(2), 190–202. DOI: 10.12911/22998993/176248.
- 19. Ngearnpat N., Chunhachart O., Kotabin N., Issakul K. 2023. Comparative assessment of gamma-polyglutamic acid and Bacillus subtilis cells as biostimulants to improve rice growth and soil quality. J. Ecol. Eng. 24(12), 46–59. DOI: 10.1299/22998993/172054.
- 20. Onanuga A.O., Adl S. 2012. Phosphorus, potassium and phytohormones promote chlorophyll production differently in two cotton (Gossypium hirsutum) varieties grown in hydroponic nutrient solution. J. Agric. Sci. 4, 157. DOI: 10.5539/jas.v4n2p157.
- 21. Pušić M.G., Mladenović E.M., Čukanović J.D., Lakićević M.D., Pavlović L.M. 2019. Influence of salinity on the growth and development of pansies (Viola x wittrockiana Gams.). Zb. Matice Srp. Prir. Nauke. 137, 57–66. DOI: 10.2298/ ZMSPN1937057P.
- 22. Quamruzzaman M., Manik S.N., Shabala S., Zhou M. 2021. Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules. 11, 788. DOI: 10.3390/ biom11060788.
- 23. Salachna P., Grzeszczuk M., Meller E., Mizielińska M. 2019. Effects of gellan oligosaccharide and NaCl stress on growth, photosynthetic pigments, mineral composition, antioxidant capacity and antimicrobial activity in red perilla. Molecules. 24, 3925. DOI: 10.3390/molecules24213925.
- 24. Salachna P. 2020. Effects of depolymerized gellan with different molecular weights on the growth of four bedding plant species. Agronomy. 10, 169. DOI: 10.3390/agronomy10020169.
- 25. Singh A. 2022. Soil salinity: A global threat to sustainable development. Soil Use Manag. 38, 39–67. DOI: 10.1111/sum.12772.
- 26. Sun L., Yang L., Yue M., Ding X., Wang Y., Liu Y., Sun W. 2023. Biosynthesis and physicochemical properties of low molecular weight gellan produced by a high-yield mutant of Sphingomonas paucimobilis ATCC 31461. Int. J. Biol. Macromol. 242, 124899. DOI: 10.1016/j.ijbiomac.2023.
- 27. Takai T., Kondo M., Yano M., Yamamoto T. 2010. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice. 3, 172–180. DOI: 10.1007/s12284-010-9047-6.
- 28. Villarino G.H., Mattson N.S. 2011. Assessing tolerance to sodium chloride salinity in fourteen floriculture species. HortTechnology. 21, 539–545. DOI: 10.21273/HORTTECH.21.5.539.
- 29. Wang X., Zohar-Perez C., Zeng Y., Zou Y., Chen Y., Wu S., Achmon Y. 2023. Assessment of the environmental impact of agar, alginate, and gellan gum carbohydrate gum macro beads biodegradation in a simulated agricultural field system. Environ. Technol. Innov. 30, 103034. DOI: 10.1016/j.eti.2023.103034.
- 30. Yang S., Zhang X., Cao Z., Zhao K., Wang S., Chen M., Hu X. 2014. Growth‐promoting Sphingomonas paucimobilis ZJSH 1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microb. Biotechnol. 7, 611–620. DOI: 10.1111/1751-7915.12148.
- 31. Yin X., Feng Q., Liu W., Zhu M., Zhang J., Li Y., Yang L., Zhang C., Cui M., Zheng X., Li Y. 2023. Assessment and mechanism analysis of plant salt tolerance regulates soil moisture dynamics and controls root zone salinity and sodicity in seasonally irrigated agroecosystems. J. Hydrol. 617, 129138. DOI: 10.1016/j.jhydrol.2023.129138.
- 32. Zawadzińska A., Salachna P. 2014. Effect of substrates containing composts with the participation of municipal sewage sludge on flowering and macronutrient content in the leaves of garden pansy (Viola ×wittrockiana Gams.). J. Ecol. Eng. 15, 78–87. DOI: 10.12911/22998993.1094982.
- 33. Zeljković S., Parađiković N., Tkalec Kojić M., Mladenović E. 2021. Effect of biostimulant application on development of pansy (Viola tricolor var. hortensis DC.) seedlings. J. Cent. Eur. Agric. 22, 596–601. DOI: 10.5513/JCEA01/22.3.3191.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b79339fc-2eb1-4a07-b66a-263fbcb39755