Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper analyses the influence of nonlinearity of the damage evolution equation that is introduced by exponent to the results obtained in the simulation of elastic-brittle material. Constitutive equation of linear-elastic medium with damages is described by the linear-tensorial function due to damage tensor. The nucleation and growth of microdamages are modelled using a two-parameter equation of damage evolution, in which the current level of damage is expressed by the principal values of Vakulenko-Kachanov and Murakami-Ohno damage tensors. The study examines a relationship between the time of the first macro crack appearance, principal values of damage tensor at the critical moment and the exponent adopted to the equation of damage evolution. The subjects of the analysis are changes in both the qualitative and quantitative variables characterizing the damage.
Czasopismo
Rocznik
Tom
Strony
463--479
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
- Institute for computational Civil Engineering Faculty of Civil Cracow University of Technology Engineering Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- 1. Lemaitre J., Chaboche J., Mechanics of solid materials, Cambridge University Press, New York, 1990.
- 2. Krajcinovic D., Damage mechanics, Elsevier Science, North Holland, 1997.
- 3. Skrzypek J.J., Ganczarski A., Artur W. [Eds], Anisotropic behaviour of damaged materials, Springer Verlag, Berlin, 2003.
- 4. Kattan P.I., Voyiadjis G.Z., Damage mechanics with finite elements: practical applications with computer tools, Springer Verlag, Berlin, 2002.
- 5. Murakami S., Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, Springer, Dordrecht, Heidelberg, London, New York: Springer, 2012.
- 6. Lemaitre J., Desmorat R., Engineering damage mechanics, Springer, Berlin, 2005.
- 7. ABAQUS Theory and users manuals, ver. 6.11, Dassault Syst`emes Simulia Corp., Providence, RI, USA.
- 8. Ambroziak A., Identification and validation of damage parameters for elasto-viscoplastic Chaboche model, Eng. Trans., 55, 1, 3–28, 2007.
- 9. Madej J., Influence of damage on variations of material thermal properties, Eng. Trans., 51, 1, 25–46, 2003.
- 10. Herv´e G., Gatuingt F., Ibrahimbegović A., On numerical implementation of a coupled rate dependent damage-plasticity constitutive model for concrete in application to high-rate dynamics, Engineering Computations, 22, 5–6, 583–604, 2005.
- 11. Rizzi E., Carol I., Secant stress/strain relations of orthotropic elastic damage with dual properties, Archives of Mechanics, 59, 2, 133–171, 2007.
- 12. Kachanov L.M., On time to rupture in creep conditions [in Russian], Izv. AN SSSR, OTN, 8, 26–31, 1958.
- 13. Voyiadjis G.Z, Kattan P.I., Yousef M.A., Some basic issues of isotropic and anisotropic continuum damage mechanics, [in:] Handbook of damage mechanics – nano to macro scale for materials and structures, pp. 3–42, 2014.
- 14. Murakami S., Ohno N., A continuum theory of creep and creep damage, [in:] Creep in structures, A.R.S. Ponter and D.R. Hayhurst [Eds.], Springer, Berlin, pp. 422–444, 1981.
- 15. Vakulenko A.A., Kachanov M.L., Continuum theory of medium with cracks [in Russian], Izv. A. N. SSSR, MTT, pp. 59–166, 1971.
- 16. Lemaitre J., Damage modelling for prediction of plastic or creep fatigue failure in structures, Trans. 5th Int. Conf. SMiRT, Berlin, North-Holland, Amsterdam, L, L5/1b, pp. 1–8, 1979.
- 17. Litewka A., Creep rupture of metals under multi-axial states of stress, Arch. Mech., 41, 3–23, 1989.
- 18. Murakami S., Notion of continuum damage mechanics and its application to anisotropic creep damage theory, J. Eng. Mat. Techn., 105, 2, 99–105, 1983.
- 19. Litewka A., Hult J., One parameter CDM model for creep rupture prediction, Eur. J. Mech., A/Solids, 8, 185–200, 1989.
- 20. Mika P., Modelling of shell structures with damage growth process [in Polish], Civil and Environmental Engineering, 3, 58, II, 405–412, 2011.
- 21. Mika P., On interaction between damage growth and material stiffness in 3D structures, J. Theor. App. Mech., 37, 755–778, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b79335e4-590b-4e33-9edd-4fedddf79b35