PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanostructure effect on the electrochemical response of titanium

Identyfikatory
Warianty tytułu
PL
Wpływ nanostruktury na właściwości elektrochemiczne tytanu
Języki publikacji
EN
Abstrakty
EN
The purpose of this work was to investigate the influence of nanostructure on titanium corrosion resistance in physiological saline (0.9% NaCl). In order to obtain the nanostructure the titanium rod was processed through multiple hydrostatic extrusion (HE). Corrosion tests included electrochemical impedance (EIS) and potentiodynamic (PD) measurements. EIS tests were performed after 2 and 24 hours of immersion in 0.9% NaCl. Potentiodynamic measurements were carried out immediately after the last impedance test. Profilometric examination was used to check whether the samples were equally prepared for corrosion measurements. After corrosion tests a scanning electron microscope (SEM) was used to characterize the morphology of the surface. Corrosion tests revealed the positive influence of nanostructure on titanium corrosion resistance. Moreover, the differences observed were larger in the case of a shorter time of immersion in physiological saline. Hence, it might be surmised that the rate of the passivation process depends on titanium grain size. The microscopic characterization of the surfaces of samples after the corrosion test indicated differences in the surface morphology. The passive film formed on the nanocrystalline sample was more compact and homogenous than on the microcrystalline one. The different number of structural defects in micro- and nanocrystalline titanium might be the reason for the observed phenomena. Due to their higher energy, structural defects could be preferential sites for the nucleation of passive layers. Consequently, the rate of passivation should be higher for nanocrystalline materials. Furthermore, the high volume fraction of structural defects also explained the existence of more tight and uniform passive layer on the nanocrystalline titanium. Good corrosion resistance in physiological saline means that nanotitanium could be an attractive material for biomedical applications.
PL
Celem pracy była analiza wpływu nanostruktury na odporność korozyjną tytanu w roztworze soli fizjologicznej (0,9% NaCl). Zakres pracy obejmował badania korozyjne materiału mikrokrystalicznego i w stanie nanokrystalicznym. Nanokrystaliczny tytan uzyskano metodą wyciskania hydrostatycznego. Przedstawiono również opis budowy warstw pasywnych po przeprowadzonych próbach korozyjnych.
Rocznik
Strony
311--316
Opis fizyczny
Bibliogr. 29 poz., fig., tab.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology
  • Faculty of Materials Science and Engineering, Warsaw University of Technology
autor
  • Faculty of Materials Engineering and Metallurgy, Silesian University of Technology
  • Faculty of Chemistry, Warsaw University of Technology
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology
Bibliografia
  • [1] Estrin Y., Vinogradov A.: Extreme grain refinement by severe plastic deformation. A wealth of challenging science. Acta Mater. 61 (2013) 782÷817.
  • [2] Huang Y., Langdon T. G.: Advances in ultrafine-grained materials. Mater. Today 16 (2013) 85÷93.
  • [3] Valiev R. Z., Estrin Y., Horita Z., Langdon T. G., Zehetbauer M. J., Zhu Y.: Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later. JOM (2016) 1216÷1226.
  • [4] Lewandowska M., Kurzydłowski K. J.: Recent development in grain refinement by hydrostatic extrusion. J. Mater. Sci. 43 (2008) 7299÷7306.
  • [5] Sabirov I., Enikeev N.A., Murashkin M.Y.,Valiev R.Z: Bulk nanostructured materials with multifunctional properties. Springer (2015).
  • [6] Mishnaevsky L., Levashov E., Valiev R. Z., Segurado J., Sabirov I., Enikeev N., Prokoshkin S., Solov'Yov A. V., Korotitskiy A., Gutmanas E., Gotman I., Rabkin E., Psakh'e S., Dluhos L., Seefeldt M., Smolin A.: Nanostructured titanium-based materials for medical implants: Modelling and development. Mater. Sci. and Eng. R Reports 81 (2014) 1÷19.
  • [7] Kim W. J., Yoo S. J., Lee J. B.: Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature. Scr. Mater. 62 (2010) 451÷454.
  • [8] Orlov D., Raab G., Lamark T. T., Popov M., Estrin Y.: Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 59 (2011) 375÷385.
  • [9] Qu S., An X. H., Yang H. J., Huang C. X., Yang G., Zang Q. S.,Wang Z. G., Wu S. D., Zhang Z. F.: Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57 (2009) 1586÷1601.
  • [10] Tamimi S., Ketabchi M., Parvin N.: Microstructural evolution and mechanical properties of accumulative roll bonded interstitial free steel. Mater. Des. 30 (2009) 2556÷2562.
  • [11] Jiang J., Ding Y., Zuo F., Shan A.: Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling. Scr. Mater. 60 (2009) 905÷908.
  • [12] Ralston K. D., Birbilis N.: Effect of grain size on corrosion. Corrosion 66 (2010) 1÷4.
  • [13] Gollapudi S.: Grain size distribution effects on the corrosion behaviour of materials. Corros. Sci. 62 (2012) 90÷94.
  • [14] Królikowski A.: Corrosion behaviour of amorphous and nanocrystalline alloys. Solid State Phenomena 227 (2015) 11÷14.
  • [15] Song D., Ma A., Jiang J., Lin P., Yang D., Fan J.: Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 52 (2010) 481÷490.
  • [16] Maleki-Ghaleh H., Hajizadeh K., Hadjizadeh A., Shakeri M. S., Ghobadi Alamdari S., Masoudfar S., Aghaie E., Javidi M., Zdunek J., Kurzydlowski K. J.: Electrochemical and cellular behavior of ultrafine-grained titanium in vitro. Mater. Sci. Eng. C 39 (2014) 299÷304.
  • [17] Abdulstaar M., Mhaede M.,Wagner L., Wollmann M.: Corrosion behaviour of Al 1050 severely deformed by rotary swaging. Mater. Des. 57 (2014) 325÷329.
  • [18] Rifai M., Miyamoto H., Fujiwara H.: Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe–20% Cr steels with extremely low C and N fabricated by ECAP. International Journal of Corrosion 1 (2015) 1÷9.
  • [19] Balusamy T., Sankara Narayanan T. S. N, Ravichandran K., Park I. S., Lee M. H.: Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel. Corros. Sci. 74 (2013) 332÷344.
  • [20] Zheng Z. J., Gao Y., Gui Y., Zhu M.:Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing. Corros. Sci. 54 (2012) 60÷67.
  • [21] Balyanov A., Kutnyakova J., Amirkhanova N. A., Stolyarov V. V., Valiev R. Z., Liao X. Z., Zhao Y. H., Jiang Y. B., Xu H. F., Lowe T. C, Zhu Y. T.: Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 51 (2004) 225÷229.
  • [22] Pisarek M., Kędzierzawski P., Janik-Czachor M., Kurzydłowski K. J.: The effect of hydrostatic extrusion on resistance of 316 austenitic stainless steel to pit nucleation. Electrochemistry Communications 9 (2007) 2463÷2466.
  • [23] Orlov D., Ralston K. D., Birbilis N., Estrin Y.: Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 59 (2011) 6176÷6186.
  • [24] Rao A. G., Katkar V. A., Gunasekaran G., Deshmukh V. P., Prabhu N., Kashyap B. P.: Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al–30Si alloy. Corros. Sci. 83 (2014) 198÷208.
  • [25] Pisarek M., Kędzierzawski P., Janik-Czachor M., Kurzydłowski K. J.: Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution. J. Solid State Electrochem. 13 (2009) 283÷291.
  • [26] Hoseini M., Shahryari A., Omanovic S., Szpunar J. A: Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corros. Sci. 51 (2009) 3064÷3067.
  • [27] Gurao N. P., Manivasagam G., Govindaraj P., Asokamani R., Suwas S.: Effect of texture and grain size on bio-corrosion response of ultrafinegrained titanium. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 5602÷5610.
  • [28] Topolski K., Pachla W., Garbacz H.: Progress in hydrostatic extrusion of titanium. J. Mater. Sci. 48 (2013) 445.
  • [29] Wejrzanowski T.: Computer assisted analysis of gradient materials microstructure. Master’s Thesis, Warsaw University of Technology (2000).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b791098d-3a60-4cdf-a263-a77a52f6eab2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.