PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A switched reluctance motor control method limiting the maximum dc source current in the low-speed range

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a proposal of a new control method of the switched reluctance motor (SRM) in the low-speed range. The proposed method limits the maximum value of SRM drive supply current. The application of this method results also in improvement of the drive efficiency compared to the classical current control method, so it can be applied to control switched reluctance motors designed to the electric vehicles drive. The method may be effective especially in congested traffic. Nowadays, the urban traffic is characterized by frequent occurrence of traffic jams in which cars move at low speeds. The sources of supply for electric vehicles are mainly electrochemical batteries. Reduction of the maximum value of supply current allows to extend the service life of batteries and improvement of the drive efficiency extends the vehicle range.
Rocznik
Strony
197--206
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., tab., fot.
Twórcy
autor
  • Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, 2 W. Pola St., 35-959 Rzeszow, Poland
Bibliografia
  • [1] M. Michalczuk, L.M. Grzesiak, and B. Ufnalski, “Hybridization of the lithium energy storage for an urban electric vehicle”, Bull. Pol. Ac.: Tech. 61 (2), 325-333 (2013).
  • [2] M. Kozłowski and W. Choromański, “Dynamics simulation studies on the electric city car with an electromechanical differential and the rear wheels drive”, Bull. Pol. Ac.: Tech. 61 (3), 661-673 (2013).
  • [3] H. Chang and Ch. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module”, IEEE Trans. on Industrial Electronics 58 (5), 1763-1775 (2011).
  • [4] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. Azizur Rahman, “Test results and torque improvement of the 50-kw switched reluctance motor designed for hybrid electric vehicles”, IEEE Trans. on Industry Applications 48 (4), 1327-1334 (2012).
  • [5] H. Chen and J.J. Gu, “Implementation of the three-phase switched reluctance machine system for motors and generators”, IEEE/ASME Trans. on Mechatronics 15 (3), 421-432 (2010).
  • [6] W. Sung, Jincheol Shin, and Yu-seok Jeong, “Energy-efficient and robust control for high-performance induction motor drive with an application in electric vehicles”, IEEE Trans. on Vehicular Technology 61 (8), 3394-3405 (2012).
  • [7] E. Kim, Jinkyu Lee, and K.G. Shin, “Real-time prediction of battery power requirements for electric vehicles”, ACM/IEEE Int. Conf. on Cyber-Physical Systems (ICCPS) 1, 11-20 (2013).
  • [8] M. Choi, S. Kim, and S. Seo, “Energy management optimization in a battery/supercapacitor hybrid energy storage system”, IEEE Trans. on Smart Grid 3 (1), 463-472 (2012).
  • [9] H. Chang and Ch. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module”, IEEE Trans. on Industrial Electronics 58 (5), 1763-1775 (2011).
  • [10] S. Tenner, S. Gunther, and W. Hofmann, “Loss minimization of electric drive systems using a DC/DC converter and an optimized battery voltage in automotive applications”, IEEE Vehicle Power and Propulsion Conf. (VPPC) 1, 1-7 (2011).
  • [11] S. Tenner, S. Gunther, and W. Hofmann, “Loss minimization of electric drive systems using a Z-source inverter in automotive applications”, Conf. on Power Electronics and Applications (EPE) 1, 1-8 (2013).
  • [12] V.P. Vujičicě, “Minimization of torque ripple and copper losses in switched reluctance drive”, IEEE Trans. on Power Electronics 27 (1), 388-399 (2012).
  • [13] C.R. Neuhaus, N.H. Fuengwarodsakul, and R.W. De Doncker, “Control scheme for switched reluctance drives with minimized DC-link capacitance”, IEEE Trans. Power Electronics 23 (5), 2557-2564 (2008).
  • [14] M. Rajesh and B. Singh, “Analysis, design and control of single-phase three-level power factor correction rectifier fed switched reluctance motor drive”, IET Power Electron. 7 (6), 1499-1508 (2014).
  • [15] R. Krishnan, Switched Reluctance Motor Drives - Modeling, Simulation, Analysis, Design, and Applications, CRC Press, Boca Raton, 2001.
  • [16] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current Control of Switched Reluctance and AC machines”, Conf. Record Industry Applications 2002. 37th IAS Annual Meeting 2, 1212-1218 (2002).
  • [17] F. Blaabjerg, P.C. Kjaer, P.O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives”, IEEE Trans. on Power Electronics 14 (3), 563-572 (1999).
  • [18] P. Bogusz, “The laboratory stand for testing of light electric vehicles drives - design and implementation”, Przegląd Elektrotechniczny 1, 16-19 (2014), (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b78a4b7a-4603-4199-b19e-5eb297d591da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.