PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Particle size characterisation of SCMs by mercury intrusion porosimetry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mercury intrusion porosimetry (MIP) is widely used for the microstructural characterisation of porous solids. Comparatively few studies have employed the technique to characterise the size of particles within powdered samples. The present study uses the MIP technique to characterise the particle sizes of contemporary supplementary cementitious materials (SCMs), and in particular uses the technique to present particle size distributions, rather than a single mean size. Representivity of the technique for known limitations of non-spherical and porous particles are checked using the Scanning Electron Microscope. The findings indicate that the MIP affords a good approximation of particle sizes, including distributions, of spherical and non-spherical particles. The technique was also found to provide reasonable accuracy for estimating the particle sizes of highly porous particles, where distinction between inter-particle and intra-particle porosity was made.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 14 poz., fot., rys., wykr.
Twórcy
autor
  • Glasgow Caledonian University, School of Engineering and Built Environment, 70 Cowcaddens road, G4 0BA, Glasgow, UK
  • Curtins Consulting (Kendal), Kendal, UK
Bibliografia
  • [1] Arvaniti EC, Juenger MCG, Bernal SA, Duchesne J, Courard L, Leroy S, et al. Physical characterization methods for supplementary cementitious materials. Materials and Structures 2014.
  • [2] León CA. Particle size distribution of carbon blacks by mercury porosimetry. Rubber Chemistry and Technology 1998;71(5):988-997.
  • [3] Mayer, R.P. & Stowe, R.A. Mercury porosimetry: breakthrough pressure for penetration between packed spheres. Journal of Colloid Science 1965;20:893-911.
  • [4] T. J. Mathews. Void structure, colloid and tracer transport properties of stratified porous mediaUniversity of Plymouth; 1999.
  • [5] Huggett S, Mathews P, Matthews T. Estimating particle size distributions from a network model of porous media. Powder Technology 1999;104:169-179.
  • [6] León CA. New perspectives in mercury porosimetry. Advances in Colloid and Interface Science 1998;76-77:341-372.
  • [7] Stanley-Wood N. Sub-micrometre Particle Size Characterisation and Distribution by Mercury Penetration. The Analyst 1979;104(1235):97-105.
  • [8] Svata, M. & Zabransky, Z. Comparison of Mercury Porosimetry, Sedimentation and Microscopy for Determining the Grain Size Distribution of Powdered Particles. Powder Technology 1969/70;3:296-298.
  • [9] Orr C. Application of Mercury Penetration to Materials Analysis. Powder Technology 1969/70;3:117-123.
  • [10] Webb PA. An Introduction To The Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis On Reduction And Presentation of Experimental Data. 2001.
  • [11] Webb PA&O, C. Analytical methods in fine particle technology. Norcross: Micromeritics Instrument Corporation; 1997.
  • [12] Darling P. Clinker grinding. Rock Products 1997.
  • [13] Arvaniti EC, Bernal SA, Courard L, De Belie N, Duchesne J, Juenger MCG, et al. Determination of particle size, surface area, and shape of supplementary cementitious materials by different techniques. Materials and Structures 2014.
  • [14] Diamond, S. & Sahu, S. Densified silica fume: particle sizes and dispersion in concrete. Materials and Structures 2006;39:549-859.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b78a3a7d-5aac-4d33-8210-056f98d280f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.