PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and electrical properties of chromium substituted nickel ferrite by conventional ceramic method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polycrystalline Cr substituted Ni ferrites [NiCrxFe2-xO4 (0.0 ≤ x ≤ 1.0)] were synthesized by conventional ceramic method and sintered at 1350 degrees C in air. X-ray diffraction (XRD) patterns showing sharp peaks confirmed the formation of single phase cubic spinel structure. The lattice parameters of the samples were determined from the XRD data using Nelson-Riley extrapolation technique. They were found to decrease with increasing Cr concentration obeying Vegard's law. X-ray density, bulk density and porosity were also calculated from the XRD data. The variation of DC resistivity with temperature was measured by two-probe method. The DC resistivity was found to decrease with increasing temperature indicating the semiconducting nature of the samples. Activation energy was calculated from the Arrhenius plot. AC resistivity, dielectric constant and loss tangent were measured in the frequency range of 1 kHz to 120 MHz at room temperature.
Wydawca
Rocznik
Strony
185--191
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh
  • Department of Physics, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh
  • Nuclear Safety, Security & Safeguards Division, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
Bibliografia
  • [1] Mund H.S., Shailja T., Jagrati S., Itou M., Sakurai Y., Ahuja B.L., J. Appl. Phys., 110 (2011), 073914.
  • [2] Hashim M., Meena S.S., Kotnala R.K., Shrsath S.E., Roy A.S. Parveen A., Bhatt P., Kumar S., Jotania R.B., Kumar R., J. Alloy. Compd., 602 (2014), 150.
  • [3] Dixit G., Singh J.P., Srivastava R.C., Agrawal H.M., Chaudhary R.J., Adv. Mater. Lett., 3 (2012), 21.
  • [4] Elhiti M.A., J. Magn. Magn. Mater., 136 (1994), 138.
  • [5] Krishna K.R., Kumar K.V., Ravinder D., Adv. Mater. Phys. Chem., 2 (2012), 185.
  • [6] Narayan R., Tripatri R.B., Das B.K., Proceedings of the Fifth International Conference on Ferrite. Bombay, India, (1989), 267.
  • [7] Kittel C., Introduction to Solid State Physics, John Wiley & Sons Inc. New York, 1976.
  • [8] Verwey E.J.W., De Boer J.H., Recueil des Travaux Chimiques des Pays-Bas, 55 (1936), 531.
  • [9] Laishram R., Phanjoubam S., Sarma H.N.K., Praksh C., J. Phys. D-Appl. Phys., 32 (1999), 2151.
  • [10] Baijal J.S., Phanjoubam S., Kothari D., Prakash C., Kishan P., Solid State Commun., 83 (1992), 679.
  • [11] Chaudhuri S.P., Sarkar P., Chakraborty A.K., Ceram. Int., 25 (1999), 91.
  • [12] Brachwitz K., Bontgen T., Lorenz M., Grundmann M., Appl. Phys. Lett., 102 (2013), 172104.
  • [13] Bärner K., Mandal P., Helmolt R.V., Phys. Status Solidi B, 223 (2001), 811.
  • [14] Shitre A.R., Kawade V.B., Bichile G.K., Jadhav K.M., Mater. Lett., 56 (2002), 188.
  • [15] Patil A.N., Mahajan R.P., Patankar K.K., Ghatage A.K., Mathe V.L., Patil S.A., Indian J. Pure Ap. Phy., 38 (2000), 651.
  • [16] Bachhav S.G., Patil A.A., Patil D.R., Adv. Ceram. Sci. Eng., 2 (2013), 89.
  • [17] Koop C.G., Phys. Rev., 83 (1951), 121.
  • [18] Nasir S., Anis-ur-Rehman M., Malik M.A., Phys. Scripta, 83 (2011), 025602.
  • [19] Batoo K.M., Physica B, 406 (2011), 382.
  • [20] Sivakumar N., Narayanasamy A., Jeyadevan B., Joseyphus R.J., J. Phys. D-Appl. Phys., 41 (2008), 245001.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b787ff15-491e-4587-8263-d3f31739624a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.