PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FISH method for identification of microbes in wastewater distribution systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fluorescence in situ hybridization (FISH) method is widely used to identify various types of cells. In comparison to cultivation dependent methods, identification of microbes by FISH is easier and generally takes several hours. A review of improvements to the FISH method has been presented, its advantages and disadvantages, as well as examples of application. Particular consideration was given to the efficiency of identification of microbes in samples taken from sewerage. The effectiveness of the method was confirmed by the results obtained in samples from the membrane bioreactor.
Rocznik
Strony
151--160
Opis fizyczny
Bibliogr. 31 poz. tab., rys.
Twórcy
autor
  • Wroclaw University of Environmental and Life Sciences, Faculty of Environmental Engineering and Geodesy, Environmental Engineering Institute, pl. Grunwaldzki 24, 50-323 Wrocław
autor
  • Brandenburg University of Technology, Siemens-Halske-Ring 8, 03046 Cottbus, Germany
  • Kielce University of Technology, Faculty of Civil and Environmental Engineering, Chair of Environmental Engineering and Protection, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
autor
  • Kielce University of Technology, Faculty of Civil and Environmental Engineering, Chair of Environmental Engineering and Protection, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • [1] SEVIOUR R., NIELSEN P.H., Microbial Ecology of Activated Sludge, IWA Publishing, London 2010.
  • [2] RASZKA A., ZIEMBIŃSKA A., WIECHETEK A., Molecular biology techniques and methods in environmental biotechnology, Czasopismo Techniczne, Środowisko, Wydawnictwo Politechniki Krakowskiej, 2009, 106 (2-Ś), 101 (in Polish).
  • [3] DELONG E.F., WICKHAM G.S., PACE N.R., Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells, Science, 1989, 243 (4896), 1360.
  • [4] AMANN R.I., BINDER B.J., OLSON R.J., CHISHOLM S.W., DEVEREUX R., STAHL D.A., Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol., 1990, 56 (6), 1919.
  • [5] AMANN R.I., LUDWIG W., SCHLEIFER K.H., Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 1995, 59 (2), 143.
  • [6] FIAŁKOWSKA E., FYDA J., PAJDAK-STÓS A., WIĄCKOWSKI K., Activated sludge: biology and microscopic analysis, 2nd Ed., Uniwersytet Jagielloński, Instytut Nauk o Środowisku, Wydawnictwo Seidel-Przywecki, 2010 (in Polish).
  • [7] LEE N.M., MEISINGER D.B., SCHMID M., ROTHBALLER M., LÖFFLER F.E., Fluorescence in Situ Hybridization, Encyclopedia of Geobiology, Encyclopedia of Earth Sciences Series, Springer, 2011, 373.
  • [8] WAGNER M., HAIDER S., New trends in fluorescence in situ hybridization for identification and functional analyses of microbes, Curr. Opin. Biotechnol., 2012, 23, 96.
  • [9] WAGNER M., HORN M., DAIMS H., Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes, Curr. Opin. Biotechnol., 2003, 6, 302.
  • [10] ALONSO C., Tips and tricks for high quality MAR-FISH preparations. Focus on bacterioplankton analysis, Syst. Appl. Microbiol., 2012, DOI: 10.1016/j.syapm.2012.02.005.
  • [11] AOI Y., In situ identification of microorganisms in biofilm communities, J. Biosci. Bioeng., 2000, 94 (6), 552.
  • [12] ARIESYADY H.D., ITO T., YOSHIGUCHI K., OKABE S., Phylogenetic and functional diversity of propionateoxidizing bacteria in an anaerobic digester sludge, Appl. Microbiol. Biotechnol., 2007, 75 (3), 673.
  • [13] BEHNAM F., VILCINSKAS A., WAGNER M., STOECKER K., A straightforward DOPE-FISH method for simultaneous multicolor detection of six microbial populations, Appl. Environ. Microbiol., 2012, 78(15), 5138.
  • [14] JOBARD M., RASCONI S., SIME-NGANDO T., Fluorescence in situ hybridization of uncultured zoosporic fungi. Testing with clone-FISH and application to freshwater samples using CARD-FISH, J. Microbiol.Methods, 2010, 83, 236.
  • [15] VOLPI E.V., BRIDGER J.M., FISH glossary: an overview of the fluorescence in situ hybridization technique, BioTechniques, 2008, 45, 385.
  • [16] LARSSON S., MEZULE L., JUHNA T., Applicability of biofilm sampling for detection of pathogens in drinking water distribution networks. Data from coupons and concentration methods, TECHNEAU, D.3.8.3, 2009.
  • [17] MORALLI D., MONACO Z.L., Simultaneous detection of FISH signals and bromo-deoxyuridine incorporation in fixed tissue cultured cells, PLoS ONE, 2009, 4 (2), 483.
  • [18] DAIMS H., RAMSING N.B., SCHLEIFER K.-H., WAGNER M., Cultivation independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization, Appl. Environ. Microbiol., 2001, 67, 5810.
  • [19] HUANG W.E., STOECKER K., GRIFFITHS R., NEWBOLD L., DAIMS H., WHITELEY A.S., WAGNER M., Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function, Environ. Microbiol., 2007, 9 (8), 1878.
  • [20] LI T., WU T.-D., MAZÉAS L., TOFFIN L., GUERQUIN-KERN J.-L., LEBLON G., BOUCHEZ T., Simultaneous analysis of microbial identity and function using NanoSIMS, Environ. Microbiol., 2008, 10 (3), 580.
  • [21] SCHIMAK M.P., TOENSHOFF E.R., WRIGHT M., Simultaneous 16S and 18S rRNA fluorescence in situ hybridization (FISH) on LR White sections demonstrated in Vestimentifera (Siboglinidae) tubeworms, Acta Histochem., 2012, 114, 122.
  • [22] TRACZEWSKA T.M., SITARSKA M., Development of biofilm on synthetic polymers used in water distribution, Environ. Prot. Eng., 2009, 35 (1), 159.
  • [23] VESEY G., ASHBOLT N., FRICKER E.J., DEERE D., WILLIAMS K.L., VEAL D.A., DORSCH M., The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labeling of viable Cryptosporidium parvum oocysts, J. Appl. Microbiol., 1998, 85 (3), 429.
  • [24] WOZNICA A., NOWAK A., BEIMFOHR C., KARCZEWSKI J., BERNAS T., Monitoring structure and activity of nitrifying bacterial biofilm in an automatic biodetector of water toxicity, Chemosphere, 2010, 78, 1121.
  • [25] DELATOLLA R., TUFENKJI N., COMEAU Y., LAMARRE D., GADBOIS A., BERK D., In situ characterization of nitrifying biofilm: Minimizing biomass loss and preserving perspective, Wat. Res., 2009, 43, 1775.
  • [26] KONG Y.H., BEER M., REES G.N., SEVIOUR R.J., Functional analysis of microbial communities in aerobic–anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios, Microbiology, 2002, 148, 2299.
  • [27] NIELSEON P.H., DAIMS H., LEMMER H., FISH Handbook for Biological Wastewater Treatment, Identification and quantification of microorganisms in activated sludge and biofilms by FISH, IWA Publishing, London 2009.
  • [28] DAIMS H., BRÜHL A., AMANN R., SCHLEIFER K.-H., WAGNER M., The domain-specific probe EUB338 is insufficient for the detection of all bacteria. Development and evaluation of a more comprehensive probe set, Syst. Appl. Microbiol., 1999, 22, 434.
  • [29] NEEF A., Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen, PhD thesis, Technische Universität, München 1997.
  • [30] MANZ W., AMANN R., LUDWIG W., WAGNER M., SCHLEIFER K.-H., Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions, Syst. Appl. Microbiol., 1992, 15, 593.
  • [31] LOY A., MAIXNER F., WAGNER M., HORN M., ProbeBase an online resource for rRNA-targeted oligonucleotide probes. New features 2007, Nucleic Acids Res., 2007, 35, 800.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b784fa5e-1613-482b-b265-895a2a407eb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.