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Abstract: In this paper, we introduce a Qn
2 (x) matrix, whose

elements are balancing polynomials, and develop a new coding and
decoding method following from the Qn

2 (x) matrix. We establish
the relations between the code matrix elements, error detection and
correction for this coding theory.
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1. Introduction

Balancing numbers, n, and balancers, r, have been originally defined as the
solution of the Diophantine equation 1 + 2 + 3 + · · · + (n − 1) = (n + 1) +
(n+ 2) + (n+ 3) + · · ·+ (n+ r). The first few balancing numbers are 1, 6, 35,
204, 1189, with respective balancers 0, 2, 14, 84, 492. Balancing numbers and
their generalization have been studied in Belbachair and Szalay (2014), Berczes,
Liptai and Pink (2010), Panda and Rout (2013), Prasad (2018), Behera and
Panda (1999), Liptai et al. (2009), as well as Ray (2014). Multiplication of
the balancing numbers was defined by Szakacs (2011). A positive integer, n,
is called a multiplying balancing number if 1 · 2 · 3 · · · · · (n − 1) = (n + 1) ·
(n + 2) · (n + 3) · · · · · (n + r) for some positive integer, r, which is known as
multiplying balancer, corresponding to the multiplying balancing number, n.
These numbers have been studied broadly during the last twenty years. The
latest results on balancing polynomials, powers of balancing polynomials and
some consequences for Fibonacci sums, as well as identities for the generalized
balancing numbers are provided in Frontczak (2019a, b, c).

The present article is organized as follows. In Section 2.1, k-balancing num-
bers and balancing numbers are defined. In Section 2.2, balancing polynomials,
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Binet formula for balancing polynomials and relations between polynomials are
considered. In Section 3.1, a new balancing polynomial matrix Q2(x) and its
properties are described. In Section 3.2, balancing polynomial coding and de-
coding method is presented. In Sections 3.3 and 3.4, the determinant of the
code matrix and the relation between code matrix elements are established, re-
spectively. Then, in Section 3.5, error detection and correction are presented.
In Sections 3.6 and 3.7, comparison of the balancing coding method with the
classical coding method and role of polynomials in cryptographic protection
are described, respectively. Finally, in Sections 4 and 5, conclusions and open
problem are provided, respectively.

2. Preliminaries

2.1. k-balancing numbers

For any positive number k, k-balancing numbers, {Bk,n}∞n=0, are defined by the
recurrence relation

Bk,n+1 = 6kBk,n −Bk,n−1, for n ≥ 1 (1)

with initial conditions

Bk,0 = 0, Bk,1 = 1.

For k = 1, (1) gives the sequence of balancing numbers and the characteristic
equation for (1) is given by

α2 − 6kα+ 1 = 0, (2)

where the roots are α1 = 3k +
√
9k2 − 1 and α2 = 3k −

√
9k2 − 1.

For k = 1, α1 = 3+2
√
2, α2 = 3−2

√
2, α1, α2 are conjugate with respect to

each other and λ = 3+2
√
2 is known as balancing constant or balancing mean,

see Ray (2014).

2.2. Balancing polynomials

The balancing polynomials, Bn(x), are the extension of the k-balancing num-
bers, Bk,n, and are defined by

Bn+1(x) =







1, for n = 0,
6x, for n = 1,
6xBn(x)−Bn−1(x) for n > 1.
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The first few balancing polynomials are B0(x) = 0, B1(x) = 1, B2(x) = 6x,
B3(x) = 36x2 − 1, B4(x) = 216x2 − 12x, B5(x) = 1296x4 − 108x2 + 1.

Theorem 1 If Bn(x) denotes the nth balancing polynomial, then

lim
n−→∞

Bn+1(x)

Bn(x)
= 3x+

√

9x2 − 1.

Proof: Let limn−→∞

Bn+1(x)
Bn(x)

= λ(x).

Then λ(x) = limn−→∞[ 6xBn(x)−Bn−1(x)
Bn(x)

] = 6x− 1
λ(x) .

Therefore, λ2(x) − 6xλ(x) + 1 = 0. The roots thereof are λ(x) = 3x +√
9x2 − 1 and λ−1(x) = 3x−

√
9x2 − 1. ✷

The Binet form for the balancing polynomials is

Bn(x) =
λn(x) − λ−n(x)

λ(x) − λ−1(x)
,

where λ(x) = 3x+
√
9x2 − 1 and λ−1(x) = 3x−

√
9x2 − 1.

The relation Bn(−x) = (−1)n+1Bn(x) follows from λ(−x) = −λ−1(x) and
λ−1(−x) = −λ(x) and we also find the relation Bn−r(x)Bn+r(x) − B2

n(x) =
−B2

r (x) for integers n, r.

In this paper, we define a new balancing polynomial matrix, Qn
2 (x), whose

elements are balancing polynomials, and we establish the relations between code
matrix elements, error detection and corrections. In 2018, Prasad (2018) pub-
lished a paper, based on balancing numbers. The present paper is based on
balancing polynomials and the suitable initial conditions, so that the here intro-
duced Qn

2 (x) matrix is applicable for the proposed coding and decoding method.

3. Main results

3.1. Balancing polynomial matrix, Q2(x), and its properties

In this section, we define the new balancing polynomial matrices, Q2(x) and
Qn

2 (x):

Q2(x) =

(

6x −1
1 0

)

=

(

B2(x) −B1(x)
B1(x) B0(x)

)

, (3)

Qn
2 (x) =

(

Bn+1(x) −Bn(x)
Bn(x) −Bn−1(x)

)

. (4)
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Proof: We will prove the above by mathematical induction.
For n = 1,

Q2(x) =

(

B2(x) −B1(x)
B1(x) B0(x)

)

=

(

6x −1
1 0

)

.

which is true for n = 1.

Suppose (4) is true for integer n = k, then

Qk
2(x) =

(

Bk+1(x) −Bk(x)
Bk(x) −Bk−1(x)

)

.

Now, we can write

Qk+1
2 (x) = (Qk

2(x))(Q2(x)) =

(

Bk+1(x) −Bk(x)
Bk(x) −Bk−1(x)

)(

6x −1
1 0

)

=

(

Bk+2(x) −Bk+1(x)
Bk+1(x) −Bk(x)

)

.

Hence, by induction, we can write

Qn
2 (x) =

(

Bn+1(x) −Bn(x)
Bn(x) −Bn−1(x)

)

,

for any value of x, the determinant of Q2(x), Det Q2(x) = 1 and determinant
of Qn

2 (x), Det Qn
2 (x) = 1 ⇛ B2

n(x) − Bn+1(x)Bn−1(x) = 1, which is known as
Cassini formula for the balancing polynomials, see Frontczak (2019b). ✷

3.2. Balancing polynomial coding and decoding method

In this paper, we introduce a new coding theory, to which we refer as balanc-
ing polynomial coding and decoding method. In this method, we represent the
message in the form of nonsingular square matrix, M , of order 2, and we repre-
sent the balancing polynomial matrix, Qn

2 (x), of order 2 as coding matrix and
its inverse matrix, (Qn

2 (x))
−1, as a decoding matrix. We represent a transfor-

mation M ×Qn
2 (x) = E as balancing polynomial coding and a transformation

E×(Qn
2 (x))

−1 = M as balancing polynomial decoding. We represent the matrix
E as code matrix.
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3.2.1. Example of the balancing polynomial coding and decoding

method

Let us represent the initial message in the form of the nonsingular square matrix,
M , of order 2:

M =

(

m1 m2

m3 m4

)

. (5)

Assume that all elements of the matrix are positive integers, i.e., m1, m2, m3,
m4 > 0. Let us now do the selection for any value of n for a Qn

2 (x) matrix in
(4). We simply write for n = 2

Q2
2(x) =

(

B3(x) −B2(x)
B2(x) −B1(x)

)

=

(

36x2 − 1 −6x
6x −1

)

. (6)

Then, the inverse of Q2
2(x) is given by

(Q2
2(x))

−1 =

(

−B1(x) B2(x)
−B2(x) B3(x)

)

=

(

−1 6x
−6x 36x2 − 1

)

. (7)

Given the above, the coding of the message (5) consists in the multiplication
of the initial matrix (6), that is

M ×Q2
2(x) =

(

m1 m2

m3 m4

)(

36x2 − 1 −6x
6x −1

)

=

(

e1 e2
e3 e4

)

= E, (8)

where e1 = 36x2m1 + 6m2x−m1, e2 = −6m1x−m2, e3 = 36x2m3 + 6m4x−
m3, e4 = −6m3x−m4.

Then the code message, E = e1, e2, e3, e4, is sent to a channel. The
decoding of the code message, E, given with (7), is performed in the following
way,

(

e1 e2
e3 e4

)(

−1 6x
−6x 36x2 − 1

)

=

(

−e1 − 6e2x 6e1x+ 36e2x
2 − e2

−e3 − 6e4x 6e3x+ 36e4x
2 − e4

)

=

(

m1 m2

m3 m4

)

= M.

3.3. Determinant of the code matrix E

The code matrix, E, is defined by the formula E = M ×Qn
2 (x). According to

the matrix theory, see Stakhov (1977, 2006), we have

DetE = Det(M ×Qn
2 (x)) = DetM ×DetQn

2 (x) = DetM × (1)n = DetM. (9)
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3.4. Relations between the code matrix elements

We can write the code matrix, E, and the initial message, M , as the following
expressions

E = M ×Qn
2 (x) =

(

m1 m2

m3 m4

)(

Bn+1(x) −Bn(x)
Bn(x) −Bn−1(x)

)

=

(

e1 e2
e3 e4

)

and

M = E × (Qn
2 (x))

−1 =

(

e1 e2
e3 e4

)(

−Bn−1(x) Bn(x)
−Bn(x) Bn+1(x)

)

=

(

−e1Bn−1(x)− e2Bn(x) e1Bn(x) + e2Bn+1(x)
−e3Bn−1(x)− e4Bn(x) e3Bn(x) + e4Bn+1(x)

)

. (10)

Since m1, m2, m3, m4 are positive integers, we have

m1 = −e1Bn−1(x) − e2Bn(x) > 0, (11)

m2 = e1Bn(x) + e2Bn+1(x) > 0, (12)

m3 = −e3Bn−1(x) − e4Bn(x) > 0, (13)

m4 = e3Bn(x) + e4Bn+1(x) > 0. (14)

From (11) and (12) we get

Bn(x)

Bn−1(x)
< −e1

e2
<

Bn+1(x)

Bn(x)
.

Now, from (13) and (14) we get

Bn(x)

Bn−1(x)
< −e3

e4
<

Bn+1(x)

Bn(x)
.

Therefore, for large n we obtain

−e1

e2
≈ λ(x), − e3

e4
≈ λ(x) where λ(x) = 3x+

√

9x2 − 1. (15)
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3.5. Error detection and correction

3.5.1. Error detection

One of the main aims of the coding theory is the detection and correction of
errors arising in the code message, E, under the influence of noise in the commu-
nication channel. The most important idea is to use the property of determinant
of the matrix as the verification criterion of the transmitted message, E. Let
the initial message, M , be given by

M =

(

m1 m2

m3 m4

)

, (16)

where all elements m1, m2, m3, m4 of the matrix M are positive integers.

Now, the determinant of M is

Det M = m1m4 −m2m3 (17)

and the code message, E,

E = (M × (Qn
2 (x)). (18)

So,

Det E = Det (M ×Qn
2 (x)) =

Det M ×Det Qn
2 (x) = Det M × (1)n = Det M. (19)

This shows that the determinant of the initial message, M , is connected with
the determinant of the code message, E, by a definite relation. The identity
(19) specifies the new method of error detection, based on the application of
the Qn

2 (x) matrix. The gist of the method consists in that the sender calculates
the determinant of the initial message, M , represents it in the matrix form
(16) and sends it to the channel after the code message, E, (18). The receiver
calculates the determinant of the code message, E, (18), and compares it with
the determinant of the initial message, M , (16), received from the channel. If
this comparison corresponds to (19), this means that the code message, E, (18),
is correct and the receiver can decode the code message, E, (18), otherwise
the code message, E, (18), is not correct. Error detection is the first step in
communication of messages.

3.5.2. Error correction

The possibility of restoration of the code message, E, can be realized by using
the property of the Qn

2 (x) matrix. For the selection of n = 2, the Qn
2 (x) matrix

will be

Q2
2(x) =

(

B3(x) −B2(x)
B2(x) −B1(x)

)

=

(

36x2 − 1 −6x
6x −1

)

. (20)
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Then, the coding of the message (16) consists in the multiplication of the
initial matrix (20), that is

M ×Q2
2(x) =

(

m1 m2

m3 m4

)(

36x2 − 1 −6x
6x −1

)

=

(

36x2m1 + 6m2x−m1 −6m1x−m2

36x2m3 + 6m4x−m3 −6m3x−m4

)

=

(

e1 e2
e3 e4

)

= E, (21)

where e1 = 36x2m1 + 6m2x −m1, e2 = −6m1x −m2, e3 = 36x2m3 + 6m4x −
m3, e4 = −6m3x−m4.

After constructing the code matrix, E, we calculate the determinant of the
initial matrix, M , (16). The determinant is sent to the communication channel
after the code message, E = e1, e2, e3, e4. Assume that the communication
channel has the special means for detecting the error in each of the elements
e1, e2, e3, e4 of the code message, E. Assume that the first element e1 of E is
received with an error. Then, we can represent the code message in the matrix
form as

E′ =

(

u e2
e3 e4

)

, (22)

where u is the corrupted element of the code message, E, but the rest of the
matrix entries must be correct and equal to the following:

e2 = −6m1x−m2; e3 = 36x2m3 + 6m4x−m3; e4 = −6m3x−m4. (23)

Then, according to the properties of the coding method, we can write the
following equation for calculation of u:

ue4 − e2e3 =

u(−6m3x−m4)− (−6m1x−m2)(36x
2m3 + 6m4x−m3) =

(m1m4 −m2m3). (24)

From (24), we get

u = 36x2m1 + 6m2x−m1. (25)

Comparing the calculated value (25) with the entry e1 of the code matrix,
E, given with (21), we conclude that u = e1. Thus, we have restored the coded
message, E, using the property of determinant of the Qn

2 (x) matrix. But in
the real situation, we usually do not know what element of the code message
is corrupted. In this case, we suppose different hypotheses about the possible
corrupted elements and then we test these hypotheses. However, we have one
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more condition for the elements of the code matrix, E, that all its elements are
integers. Our first hypothesis is that we have the case of a single error in the
code matrix, E, received from the communication channel. It is clear that there
are four variants of the single errors in the code matrix, E:

(a)

(

u e2
e3 e4

)

(b)

(

e1 v

e3 e4

)

(c)

(

e1 e2
w e4

)

(d)

(

e1 e2
e3 z

)

, (26)

where u, v, w, z are the corrupted elements. In this case we can check different
hypotheses (26). For checking the hypotheses (a), (b), (c), (d) we can write the
following algebraic equations based on the checking relation (19):

ue4 − e2e3 = Det M(a possible single error is in the element e1), (27)

e1e4 − ve3 = Det M(a possible single error is in the element e2), (28)

e1e4 − e2w = Det M(a possible single error is in the element e3), (29)

e1z − e2e3 = Det M(a possible single error is in the element e4). (30)

It follows from (27)-(30) that there are four variants for the calculation of
the possible single errors.

u =
Det M + e2e3

e4
, (31)

v =
−Det M + e1e4

e3
, (32)

w =
−Det M + e1e4

e2
, (33)

z =
Det M + e2e3

e1
. (34)

The formulae (31)-(34) give four possible variants of a single error, but we
have to choose the correct variant only among the cases of the integer solutions
u, v, w, z; besides, we have to choose such solutions, which satisfy the additional
checking relations (15). If calculations by the formulae (31)-(34) do not give an
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integer result, we have to conclude that our hypothesis about the single error
is incorrect or we have an error in the checking element Det M . For the latter
case we can use the approximate equalities (15) for checking the correctness of
the code matrix, E. By analogy, we can check all the hypotheses of a double
error in the code matrix. Let us consider the following case of a double error in
the code matrix, E

(

u v

e3 e4

)

, (35)

where u, v are the corrupted elements of the code message. Using the first
checking relation (19) we can write the following algebraic equation for the
matrix (35):

ue4 − ve3 = Det M. (36)

However, according to the second checking relation (15), there is the following
relation between u and v

u ≈ −λ(x)v. (37)

It is important to emphasize that (36) is a Diophantine equation. As a
Diophantine equation, (36) has many solutions, and we have to choose such
solutions u, v, which satisfy the checking relation (37). By analogy, one may
prove that by using the checking relations (15), (19) by means of solution of the
Diophantine equation similar to (36) we can correct all possible double errors
in the code matrix. However, we can show that by using such approach there
is also a possibility of correcting all the possible triple errors in the code matrix

E, for example

(

u v

w e4

)

etc., where u, v, w are the corrupted elements.

Thus, our method of error correction is based on the verification of different
hypotheses about errors in the code matrix by using the checking relations (15),
(19), and by using the fact that the elements of the code matrix are integers.
If all our solutions do not lead to integer outcomes, conform to (15) and (19),
it means that the checking element Det M is erroneous or we have the case of
fourfold error in the code matrix, E and we have to reject the code matrix, E, as
defective and not corrigible. Our method allows for correction 14 cases among
(4C1+

4C2+
4C3+

4C4)=24 − 1 = 15 cases. It means that correction ability of
the method is 14

15 = 0.9333 = 93.33%.

3.6. Comparison of the balancing coding method with the classical

coding method

The balancing coding method is based on the matrix approach, which possesses
many peculiarities and advantages in comparison to the classical (algebraic)
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coding method. The use of matrix theory for designing new error-correction
codes is the first peculiarity of this coding method. The large information
units, in particular matrix elements, are objects of detection and correction of
errors in this coding method. There is no theoretical restriction for the value
of the numbers that can be the matrix elements, whereas in algebraic coding
theory there are very small information elements, bits and their combinations
are the objects of detection and correction. This coding method has very high
correction ability in comparison to classical coding.

3.7. The role of polynomials in cryptographic protection

Polynomials have, definitely, a prominent position in mathematics. Gradually,
polynomials have become unavoidable also in cryptography. They are very im-
portant in encryption and decryption procedures for security purposes. The
security and complexity are increasing as the degrees of polynomials are in-
creasing.

4. Conclusion

The balancing coding method is the main application of the Qn
2 (x) matrix,

whose elements are balancing polynomials. This coding method reduces to
matrix multiplication, a well-known algebraic operation, which is realized very
well in modern computers. The main practical peculiarity of this method is
that the large information units, in particular, matrix elements, are objects of
detection and correction of errors. The elements of the initial matrix, M , and
therefore the elements of the code matrix, E, can be the numbers of unlimited
value. It means that, theoretically, this coding method allows to correct the
numbers of unlimited value. The correction ability of this method is 93.33%.
The correction ability and detection ability of this coding method are very high
in comparison with the algebraic coding methods.

5. Open problem

There is a problem of defining a Qn
k (x) matrix of order k ≥ 3, whose elements

are balancing polynomials. This matrix will be useful for establishing a code
matrix, error detection and correction for more general situations.
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