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Abstract
We present a method of approximation of a deformation �eld based on the local a�ne transformations constructed based
on n nearest neighbors with respect to points of adopted grid. The local a�ne transformations are weighted by means of
inverse distance squared between each grid point and observed points (nearest neighbors). This work uses a deformation
gradient, although it is possible to use a displacement gradient instead – the two approaches are equivalent. To decompose
the deformation gradient into components related to rigid motions (rotations, translations are excluded from the
deformation gradient through di�erentiation process) and deformations, we used a polar decomposition and
decomposition into a sum of symmetric and an anti-symmetric matrices (tensors). We discuss the results from both
decompositions. Calibration of a local a�ne transformations model (i.e., number of nearest neighbors) is performed on
observed points and is carried out in a cross-validation procedure. Veri�cation of the method was conducted on simulated
data-grids subjected to known (functionally generated) deformations, hence, known in every point of a study area.
Key words: deformation analysis, polar decomposition, a�ne transformation, rotation matrix, stretch tensor

1 Introduction

Deformation analysis aims at inferring on geometrical changes
of objects under study. The object, in fact, may be of material
character, for example, deformation of the Earth’s crust, and
also may have an abstract character, for example, deformation
of the gravity �eld (Dermanis and Livieratos, 1983). Both cases
are treated by the same tools originating from, for example,
di�erential geometry, theory of elasticity (also continuum me-
chanics), estimation theory, and tensor calculus. The geomet-
rical changes are understood as rigidmotions and distortions of
the object’s shape. Deformation analysis has a very broad spec-
trum of applications in seemingly not related �elds but aiming

at as accurate as possible description of object’s behavior in dif-
ferent time instances (epochs). It is used, amongst others, in
biomechanics andmedicine-related applications (Tanaka et al.,
2012; Bayly et al., 2005), in surveying engineering (Caspary
et al., 1990), in Earth’s crust movement monitoring (Altiner,
2013; Dermanis and Kotsakis, 2006), and in landslides moni-
toring (Szafarczyk and Gawalkiewicz, 2016) to mention only a
few.
The search for simple and universal methods (and also soft-

ware development) for the determination of a deformation �eld
is still an up-to-date research topic Goudarzi et al. (2015). In
this article, we present a simple method to approximate a de-
formation �eld based on the tools that surveyors and geodesists
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are familiar with. It uses a distance-weighted a�ne transfor-
mation model performed in a local manner and calibrated in
a cross-validation (CV) procedure. The method uses a rigor-
ous approach to recover a rotation and a stretch tensor from a
deformation gradient. This approach relies on the use of polar
decomposition of a deformation gradient rather than the use of
simpli�ed decomposition into symmetric and skew-symmetric
parts. However, the two are discussed. The use of the lat-
ter mentioned decomposition was justi�ed when the computer
processing power was limited or it may be accepted when a pri-
ori knowledge of small rotation angles is present. The method
provides all estimated quantities (strains and rotation) with
their standard errors obtained via variance–covariance propa-
gation law.
The article is organized as follows. The �rst introductory

section de�nes quantities that are used throughout the article,
that is, a deformation gradient (or displacement gradient), the
polar decomposition of a matrix (used to separate rigid rota-
tions from deformations), and two strain tensors. The second
section shows the mechanics of the method. It presents the
a�ne transformation model in its explicit (geometric param-
eters equal to rotation and strain tensor entries) and implicit
(transformation parameters) forms. It also demonstrates the
use of polar decomposition to recover geometric parameters
from transformation parameters. In addition, a formula based
on the variance–covariance propagation law for error analysis
of the geometric parameters of the transformation and a CV
technique to calibrate the local a�ne transformations are pre-
sented. The next section is a part of numerical example. Data
are simulated to have the full control over the method. The
data generation process is explained, and necessary formulas
are provided. The subsequent section shows the results of the
method and its reliability in comparison to theoretical values
of generated deformations. Finally, conclusions are drawn.

2 Deformation Gradient, Polar decomposi-
tion, and Strain tensors

Deformation gradient (F) or/and displacement gradient (G) are
basic tools while analyzing deformations (in theory of elasticity
and continuummechanics). If we introduce two con�gurations
of points (homological) representing any object and we denote
a vector of coordinates of any point in the �rst one as x = [x y]T
(initial or reference) and in the second one as X = [X Y]T (cur-
rent or deformed), then wemay try to de�ne a relation between
x and X of the form X = f(x). The deformation gradient is de-
�ned as the derivative of each component of the deformed X
vector with respect to each component of the reference x vector.
Hence, the deformation gradient (here in 2D) reads as follows:

F = ∂X
∂x =

[
∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

]
. (1)

On the other hand, if we introduce a displacement vector u =
X – x, then the deformation gradient may be expressed as

F = ∂ (x + u)
∂x = I + ∂u

∂x = I + G, (2)
where G = ∂u

∂x is a displacement gradient. The deformationgradient (or displacement gradient) carries total information
about local rotation and deformations of an object.
To recover deformations and rotations from the deforma-

tion gradient, a polar decomposition is used. The polar decom-
position of a matrix factorizes the matrix into a product of an
orthogonal matrix R and a symmetric positive (semi) de�nite

matrix U (a stretch tensor), that is,
F = RU, (3)

where R must obey det(R) = 1 to be a rotation matrix. The
polar decompositionmay be obtained, for example, bymeans of
singular value decomposition (SVD) or spectral decomposition.
Generally, in order to transform a stretch tensor U (factor of
the polar decomposition) into a strain tensor, one subtracts the
identity matrix from it (or takes its logarithm, i.e., logU, but
this strain measure will not be used in this work) for the review
of these mentioned and other strainmeasures, for example, see
Chaves (2013). In this work, we use only two strain measures
(tensors):
i. Biot’s strain tensor (a straightforward measure of strain
but not commonly used):

EB =
[
EB11 EB12
EB21 EB22

]
= (U – I) = [I + 2(G + GT) + GTG] 12 – I,

(4)
ii. Small (engineering/in�nitesimal) strain tensor (common
but limited to small rotations):

ε =
[
ε11 ε12
ε21 ε22

]
= 12

(
F + FT) – I = 12 (G + GT) . (5)

Using polar decomposition with R = I (no rotation case), that
is, F = RU = U, it is easy to show that the small strain tensor is
identical to Biot’s tensor:

ε = 12
(
F + FT) – I = 12 (RU + UTRT) – I = U – I (6)

For negligible rotations, not the strains themselves, instead of
the polar decomposition, one may use a simple decomposition
of a displacement gradient into a symmetric matrix (eq. (5))
and a skew-symmetric one, that is,

G = 12
(
G + GT) + 12 (G – GT) = Gs + Ga =
=
[ 1
2
(
F + FT) – I] + 12 (F – FT) ,

(7)

where Gs (a symmetric matrix) stores information on expan-
sion, contraction, and shearing deformations at a given point
and Ga (a skew-symmetric matrix) carrying information on
rotations (in�nitesimal ones) (Berber et al., 2012).

3 Mechanics of the method

3.1 A�ne transformation

To locally relate coordinates of an undeformed (reference, ini-
tial) con�guration (or con�guration obtained from any previ-
ous measurement), denoted in lowercase, with the coordinates
of deformed con�guration (current or �nal), denoted in up-
percase, we use a�ne transformation model, known also as
6-parameter transformation. The a�ne transformation is a
simple and �exible model (deforms shapes but parallel lines
are preserved) often used in surveying and mapping practice.
For a single point, we construct two equations of the following
form (e.g., Osada and Sergieieva (2010)):

X = tX + ax + by = tX + (sx cosϕ – sxy sinϕ) x
+ (sxy cosϕ – sy sinϕ) y, (8a)

Y = tY + cx + dy = tY + (sx sinϕ + sxy cosϕ) x
+ (sxy sinϕ + sy cosϕ) y, (8b)
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or in a matrix-vector form:

X =
[
X
Y

]
=
[
tX
tY

]
+
[
a b
c d

][
x
y

]
=

=
[
tX
tY

]
+
[cosϕ –sinϕ
sinϕ cosϕ

][
sx sxy
sxy sy

][
x
y

]
= t + RUx,

(9)

where tX , tY , sx, and sy are translations and scale factors(stretches) along the x- and y- axes, respectively; sxy is theshear; and ϕ is the rotation angle while transformation pa-
rameters a, b, c, and d are functions of previously introduced
geometric parameters. To solve for unknown parameters, we
need at least three homological points in no adjustment case
or more to adjust the results and obtain some accuracy mea-
sures. Equations (8a), (8b) or (9) reveal the relation among
transformation parameters a, b, c, and d and geometric param-
eters sx, sy sxy, and ϕ. The considered model is nonlinear withrespect to geometric parameters (scale factors, shear, and rota-
tion), and it can be solved through linearization and iteration
to explicitly obtain geometric parameters (rather uncomfort-
able solution). On the other hand, this model is linear with
respect to transformation parameters and may easily be solved
in the linear least squares framework (this option was chosen
in this work), but this will require a variance–covariance prop-
agation from transformation parameters to geometric param-
eters (shown hereafter). The local a�ne transformations are
weighted, in this work, by means of inverse distance squared
between each grid point (new point) and observed points (near-
est neighbors). It is easy to notice that the deformation gradi-
ent and its polar decomposition in the a�ne transformation
case read (compare to the right hand side of eq. (9)):

F =
[
a b
c d

]
= RU =

[cosϕ –sinϕ
sinϕ cosϕ

][
sx sxy
sxy sy

]
(10)

3.2 Polar decomposition (once more)

Polar decomposition of a matrix is very often presented and
computed via abovementioned SVD. Using SVD to extract a ro-
tation matrix and a stretch matrix (stretch tensor) from the

deformation gradient, we have the following relation:
F =WΣVT = RU, (11)

where W and V are orthogonal matrices and Σ is a diagonal
matrix with non-negative values on the main diagonal. By in-
troducing the product VTV before Σ in (11), one obtains

F =WVTVΣVT = RU. (12)
Hence, the factors of the polar decomposition read as

R =WVT and U = VΣVT. (13)
A �rm review of polar decomposition algorithms (iterative and
exact) and its properties may be found in, for example, Gander
(1990), Markley andMortari (1999), Higham (1986), Shoemake
and Du� (1992).

3.3 Variance and covariance propagation among
transformation parameters and geometric param-
eters

To equip the geometric parameters (obtained with the use
of polar decomposition) with standard errors, the variance–
covariance propagation law was used. According to equa-
tion (8a), (8b) or (9), transformation parameters may explicitly
be expressed as functions of geometric parameters, that is,

tX = tX , (14a)
tY = tY , (14b)

a = sx cosϕ – sxy sinϕ, (14c)
b = sxy cosϕ – sy sinϕ, (14d)
c = sx sinϕ + sxy cosϕ, (14e)
d = sxy sinϕ + sy cosϕ. (14f)

Jacobi matrix reads as (the order of di�erentiation is tX , tY , sx,
sy, sxy, ϕ)

J =



∇tX
∇tY
∇a
∇b
∇c
∇d


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 cosϕ 0 – sinϕ –sxy cosϕ – sx sinϕ0 0 0 – sinϕ cosϕ –sy cosϕ – sxy sinϕ0 0 sinϕ 0 cosϕ sx cosϕ – sxy sinϕ0 0 0 cosϕ sinϕ sxy cosϕ – sy sinϕ


. (15)

If we denote a vector of transformation parameters as
p̂T = [tX tY a b c d

] (16)
and a vector of geometric parameters as

p̂Tg =
[
tX tY sx sy sxy ϕ

] , (17)
then the variance–covariance propagation law gives

Cov (p̂g) = J–1Cov (p̂) JT–1 (18)
and standard errors are the square roots of entries on the main
diagonal of the matrix (18).

3.4 Calibration of the model

Calibration of the model means here selection of optimal num-
ber of nearest neighbors (or possibly other factors in�uencing
the model) for local a�ne transformations. The model is cal-
ibrated on known points (observations) with an assumption
that the results of calibration should be valid for all points
within a study area. As a criterion we use, a CV score that is
equal to

CV(nn) = N∑
i=1
(
Xi – X̂i(nn)

)2 + N∑
i=1
(
Yi – Ŷi(nn)

)2 , (19)

where X̂i(nn) and Ŷi(nn) are �tted (adjusted) values of Xi and
Yi with the observations for point i omitted from the calibra-
tion process, nn means the number of nearest neighbors, and
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(a) the original (undeformed) grid (b) central swirl deformation (c) non-central swirl deformation
Figure 1. The e�ect of swirl-like deformation model

N denotes the number of known points. The lowest value of
CV score indicates possibly the best model among the tested
(optimal in CV-sense number of nearest neighbors or other pa-
rameters de�ning the model).

4 Data

In order to have full control over the operation of the method,
the deformed grids (a current con�guration) on the basis of un-
deformed ones (a reference con�guration) have been simulated
in a functional manner. They were generated according to the
swirl-like (Fig. 1), barrel (Fig. 2), and pincushion (Fig. 3) defor-
mation models. Thus generated grids acted as observed points
(with known coordinates in current and reference con�gura-
tions). The grids were generated in a regular (equally spaced
points) and irregular (percentage of randomly deleted points
from the regular grid)manner (irregular ones are not presented
in the �gures). Only the kinds (shape) of deformation used in
this study are demonstrated in the included �gures.

4.1 Swirl-like deformation

Swirl-like deformation is introduced by the following formulas:

X = (x – x0) cos
(
e–
(
r
b
)2
α

)
– (y – y0) sin

(
e–
(
r
b
)2
α

)
+ x0,
(20a)

Y = (x – x0) sin
(
e–
(
r
b
)2
α

)
+ (y – y0) cos

(
e–
(
r
b
)2
α

)
+ y0,
(20b)

where r = √(x – x0)2 + (y – y0)2 is a distance of a point fromthe center of a deformation, α is a rotation angle, b is a control
parameter, and x0 and y0 are coordinates of the center of adeformation. A graphical representation of this deformation is
presented in Fig. 1
Components of the deformation gradient, given in (1), in

this case read as

∂X
∂x = cos

(
e–
(
r
b
)2
α

)
+ 2e

–( rb)2α (x – x0)
b2[

sin
(
e–
(
r
b
)2
α

)
(x – x0) + cos

(
e–
(
r
b
)2
α

)
(y – y0)

]
,
(21a)

∂X
∂y = – sin

(
e–
(
r
b
)2
α

)
+ 2e

–( rb)2α (y – y0)
b2[

sin
(
e–
(
r
b
)2
α

)
(x – x0) + cos

(
e–
(
r
b
)2
α

)
(y – y0)

]
,
(21b)

∂Y
∂x = sin

(
e–
(
r
b
)2
α

)
– 2e

–( rb)2α (x – x0)
b2[

cos
(
e–
(
r
b
)2
α

)
(x – x0) – sin

(
e–
(
r
b
)2
α

)
(y – y0)

]
,
(21c)

∂Y
∂y = cos

(
e–
(
r
b
)2
α

)
– 2e

–( rb)2α (y – y0)
b2[

cos
(
e–
(
r
b
)2
α

)
(x – x0) – sin

(
e–
(
r
b
)2
α

)
(y – y0)

]
.
(21d)

4.2 Barrel and Pincushion deformations (distortion)

X = (x – x0)
(1 + c1r2 + c2r4) + x0, (22a)

Y = (y – y0)
(1 + c1r2 + c2r4) + y0, (22b)

where r = √(x – x0)2 + (y – y0)2 is a distance of a point fromthe center of a deformation, c1 and c2 are constants (c1, c2 < 0for barrel distortion; c1, c2 > 0 for pincushion distortion), and
x0 and y0 are the coordinates of the center of a deformation.A graphical representation of barrel and pincushion deforma-
tions is presented in Fig. 2 (a barrel deformation) and in Fig. 3
(a pincushion deformation). Components of a deformation gra-
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(a) the original (undeformed) grid (b) central barrel deformation (c) non-central barrel deformation
Figure 2. The e�ect of barrel deformation model

(a) the original (undeformed) grid (b) central pincushion deformation (c) non-central pincushion deformation
Figure 3. The e�ect of pincusion deformation model

dient given in (1) read as
∂X
∂x =c1r2 + 2 (x – x0)2

(
c1 + 2c2r2

) + c2r4 + 1, (23a)
∂X
∂y =2 (y – y0) (x – x0)

(
c1 + 2c2r2

) , (23b)
∂Y
∂x =2 (y – y0) (x – x0)

(
c1 + 2c2r2

) , (23c)
∂Y
∂y =c1r2 + 2 (y – y0)2

(
c1 + 2c2r2

) + c2r4 + 1. (23d)

5 Results

In this section, some exemplary results from simulation study
of the method are presented. Tables 1–3 present selected re-
sults for above-described deformation models. As measures of
deformation structure recovery, we used minimum value, 1st
quartile, median, 3rd quartile and maximum value, mean er-
ror (ME as a measure of over- or underestimation), mean ab-
solute error (MAE), and a correlation coe�cient between true
and estimated strain components. ME and MAE are based on
di�erences between corresponding true and estimated values
of strain tensor components. In all presented cases, strain
components were determined at points being incenters of De-
lone triangles covering the simulated study areas. Five nearest
neighbors were used to generate locally weighted a�ne trans-
formation models giving the opportunity of providing the re-
sults with error analysis. A spatial domain of 500 m × 500 m
was covered by regular and irregular grids of points. The regu-
lar grids consisted of 10 points in each row and in each column

(100 points). In order to keep the same number of points for
irregular grids, a densi�ed set of points (20 in each row and col-
umn) was generated and then 75% of points were randomly re-
moved. Simulated deformations resulted in various (from low
to high) magnitudes of displacements of grid points.
As �rst, the results from a swirl-like deformation with sig-

ni�cantly varying displacements will be presented (extreme
case). The results from both regular and irregular grids will
be presented in a single table; in every cell, the �rst row refers
to the regular case and the second row refers to the irregular
case (this also concerns remaining deformation models).
The results contained in Table 1 concern data generated ac-

cording to a central swirl-like deformation with parameters:
x0 = mean(x), y0 = mean(y), α = π/50, and b = 100. Theseparameters resulted in displacement of points varying from -
2.4318 to 2.4318 m (with arbitrary intermediate values) with
respect to the reference (undeformed) con�guration. Compar-
ison of statistical structure of true and estimated strain com-
ponents (for both grids) measured by minimum value, maxi-
mum value, and quartiles reveal moderate but still very infor-
mative correspondence between the two. Values of MEs, on
the other hand, reveal negligible overestimation (underestima-
tion) in this case. Correlation coe�cient for the regular grid
close to unity con�rms a linear relationship (correspondence)
of true and estimated strain tensor components. Also MAEs
prove satisfactory accuracy obtained from the method in this
case. It is worth mentioning that absolute di�erences between
true and estimated strain components do not exceed (in major-
ity of points – 90%) values of corresponding standard errors
o�ered by the method (eq. 18). For irregular case, a decrease
in structure recovery is visible. MEs reveal stronger underes-
timation (overestimation) of strain tensor components; MAEs
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Table 1. Comparison of statistical measures for true and estimated strain components for regulargrid (�rst rows) and irregular grid (second rows) in a central swirl-like deformationmodel
EB11 EB22 EB12 = EB21

True Estimated True Estimated True Estimated
Minimum -0.01979 -0.01712 -0.02272 -0.01787 -0.02262 -0.02093

-0.02251 -0.02352 -0.02288 -0.02230 -0.02288 -0.02330
1st quartile -0.00208 -0.00171 -0.00245 -0.00208 -0.00189 -0.00224

-0.00209 -0.00326 -0.00283 -0.00359 -0.00202 -0.00196
Median 0.00001 -0.00002 -0.00001 -0.00005 0.00000 0.00001

0.00000 -0.00018 0.00003 -0.00018 0.00000 0.00000
3rd quartile 0.00246 0.00194 0.00227 0.00209 0.00188 0.00226

0.00288 0.00324 0.00210 0.00273 0.00334 0.00371
Maximum 0.02325 0.01808 0.02025 0.01713 0.02238 0.02075

0.02261 0.02553 0.02303 0.02532 0.02285 0.02042
ME 0.00003 0.00002 -0.00001

0.00010 0.00014 -0.00024
MAE 0.00110 0.00108 0.00122

0.00285 0.00261 0.00218
Correlation
coe�cient

0.98327 0.98265 0.96365
0.82977 0.86766 0.91781

Table 2. Comparison of statistical measures for true and estimated strain components for regulargrid (�rst rows) and irregular grid (second rows) in a non-central barrel deformationmodel
EB11 EB22 EB12 = EB21

True Estimated True Estimated True Estimated
Minimum -0.00114 -0.00100 -0.00114 -0.00106 -0.00076 -0.00071

-0.00091 -0.00092 -0.00089 -0.00090 -0.00055 -0.00062
1st quartile -0.00021 -0.00023 -0.00021 -0.00022 -0.00007 -0.00007

-0.00021 -0.00024 -0.00019 -0.00021 -0.00008 -0.00009
Median -0.00005 -0.00006 -0.00005 -0.00006 0.00000 0.00000

-0.00008 -0.00011 -0.00006 -0.00007 -0.00001 -0.00002
3rd quartile -0.00001 -0.00001 -0.00001 -0.00001 0.00000 0.00000

-0.00001 -0.00001 -0.00001 -0.00001 0.00000 0.00000
Maximum 0.00000 0.00000 0.00000 0.00000 0.00009 0.00009

0.00000 0.00000 0.00000 0.00000 0.00011 0.00010
ME 0.00000 0.00000 0.00000

0.00002 0.00002 0.00001
MAE 0.00001 0.00001 0.00000

0.00003 0.00002 0.00001
Correlation
coe�cient

0.99427 0.99418 0.99925
0.98163 0.98620 0.98415

are roughly 2.5 times larger than those in the previous case.
Correlation coe�cient, although visibly lower, is still close to
unity and con�rms a linear relationship (correspondence) of
true and estimated strain tensor components. This accuracy
degradation is justi�ed by large deformations (generated on
purpose) manifesting themselves by points’ displacements and
irregularity of sampling.
Table 2 contains the results for a non-central barrel defor-

mation with parameters x0 = 0.45·mean(x), y0 = 0.45·mean(y),
c1 = –5 · 10–15, c2 = –5 · 10–15. These parameters resulted indisplacement of points varying from -0.1747 to 0.0149 m (bal-
anced in comparison to the previous deformation model) with
respect to the reference (undeformed) con�guration.
The estimated quantities match theoretical ones accurately.

Values of MEs reveal insigni�cant overestimation in this case.
Correlation coe�cients close to unity con�rm a linear corre-
spondence of true and estimated strain tensor components.
MAEs prove more than satisfactory accuracy obtained from the
method used in this case. The results listed in Table 3 concern
data generated according to a non-central pincushion deforma-
tion with parameters x0 = 0.75 ·mean(x), y0 = 0.75 ·mean(y),

c1 = 5 · 10–15, c2 = 5 · 10–15. These parameters resulted indisplacement of points varying from -0.0165 to 0.0596 (mild)
with respect to the reference (undeformed) con�guration.
Also in this mild-deformation case, one observes very good

strain tensor structure recovery with regard to its theoretical
counterparts. The results are so satisfactory that they do not
require further comment.
As mentioned in the introductory section, the use of small

strain tensor (eqs. (5) and (7)) in deformation analysis is jus-
ti�able when there is no rotation or it is negligible. The last
two simulations are very good examples in this respect because
these deformation models do not contain the rotation compo-
nent at all. Hence, in these cases, there is no di�erence be-
tween strain tensor components obtained by means of eqs. (4)
and (5). On the other hand, for a swirl deformation model that
consists of variable rotations, the di�erence between the two
strain tensors becomes visible, although the presented example
uses rather small values of rotation angles. Maximum di�er-
ence between the small strain tensor and Biot’s strain tensor
reaches the value of 1.8 mm/m (for 3.4◦ rotation angle), and
also signi�cant di�erences are observed for angles down to ap-
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Table 3. Comparison of statistical measures for true and estimated strain components for regulargrid (�rst rows) and irregular grid (second rows) in a non-central pincushion deforma-tion model
EB11 EB22 EB12 = EB21

True Estimated True Estimated True Estimated
Minimum 0.00000 0.00000 0.00000 0.00000 -0.00010 -0.00010

0.00000 0.00000 0.00000 0.00000 -0.00010 -0.00008
1st quartile 0.00000 0.00001 0.00000 0.00001 -0.00001 -0.00001

0.00000 0.00000 0.00000 0.00000 -0.00001 -0.00001
Median 0.00002 0.00002 0.00002 0.00002 0.00000 0.00000

0.00002 0.00002 0.00002 0.00003 0.00000 0.00000
3rd quartile 0.00007 0.00008 0.00007 0.00008 0.00001 0.00001

0.00007 0.00007 0.00007 0.00007 0.00001 0.00001
Maximum 0.00046 0.00040 0.00046 0.00042 0.00031 0.00029

0.00046 0.00042 0.00044 0.00046 0.00030 0.00029
ME 0.00000 0.00000 0.00000

0.00000 0.00001 0.00000
MAE 0.00001 0.00001 0.00000

0.00001 0.00001 0.00001
Correlation
coe�cient

0.99093 0.99057 0.99876
0.98281 0.97792 0.98595

proximately 1.5◦. Comparing themaximum di�erence between
the two tensors with the overall accuracy of the method mea-
sured byMAE, one notices that themagnitude of this di�erence
exceeds the MAE for the regular grid and makes approximately
65% of MAE for irregular grid (for particular values, see Ta-
ble 1). Hence, when a rotation component is not negligible, the
use of small strain tensor is a misuse and may lead to unreli-
able results. Generally, with readily availablemodern computer
power at hand, there is no need to use simpli�ed solutions;
hence, the use of polar decomposition is recommended. The
use of this decomposition is not computer intensive because
we use only 2nd-rank tensors represented by matrices (2×2
for 2D and 3×3 for 3D).

6 Conclusions

In the article, we have presented a simple method that ap-
proximates a planar deformation �eld, that is, strain tensor
and rotation components. The method is based on a distance-
weighted a�ne transformation model performed for each gen-
erated grid point based on the nearest observations covering
the study area. In order to recover a stretch (and later a strain)
tensor and a rotation from local a�ne transformation param-
eters, we used a standard tool used in continuum mechanics,
that is, the polar decomposition performed with the use of an-
other matrix decomposition, that is, singular value decomposi-
tion. The latter decomposition is easily accessible in many soft-
ware packages, for example, MATLAB, Mathematica, Mathcad,
R, and others. For comparison purposes, we also used a sim-
pli�ed decomposition, that is, decomposition into symmetric
(strain) and antisymmetric (in�nitesimal rotation) parts. The
comparison demonstrates that when a rotation component is
not negligible, the use of small strain tensor may lead to un-
reliable results. To perform accuracy analysis, we also derived
a formula for a covariance matrix for stretch (also strain) and
rotation tensors components. The derived formula is based on
a variance–covariance propagation law between a�ne trans-
formation coe�cients and geometric parameters. Many nu-
merical (simulation) tests (among them, those presented in
the content of the article) proved the potential and usability
of this simple method in deformation-analysis-related prob-
lems. The method may be extended to a 3-dimensional case
what is in fact in progress. In the simulation study, we omit-

ted all issues concerned with eigen (spectral) analysis of strain
tensors because it would not bring any additional information
to the presented method in the context of this article.
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