PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kierunki rozwoju powłok ochronnych kinematycznych węzłów maszyn

Autorzy
Identyfikatory
Warianty tytułu
EN
Development directions of protective coatings of machine kinematic joints
Języki publikacji
PL
Abstrakty
PL
W artykule omówiono w sposób skrótowy zagadnienia związane z wytwarzaniem powłok ochronnych kinematycznych węzłów maszyn, o korzystnych właściwościach tribologicznych, zapewniających właściwą eksploatację urządzeń technicznych. Omówiono zasady funkcjonowania a także możliwości stosowania powłok adaptacyjnych oraz powłok otrzymywanych z udziałem nanostruktur. Zaprezentowano koncepcję konstytuowania tego rodzaju powłok w procesie eksploatacji oraz przedstawiono badania możliwości jej realizacji, przytaczając przykładowe wyniki badań własnych.
EN
The paper presents shortly problems connected with protective coatings of machine kinematic joints generation of advantageous tribological properties assuring proper exploitation of technical equipment. Rules of operation and applications possibilities of adaptative coatings as well as coatings obtained with addition of nanostructures were discussed. A concept of such coatings generation during exploitation process was presented and examinations of this concept practical realisation possibilities were showed with some examples of own examination results.
Czasopismo
Rocznik
Tom
Opis fizyczny
Bibliogr. 50 poz., rys., wykr., pełen tekst na CD
Twórcy
Bibliografia
  • [1] Aouadi S.M. et al.: Tribological investigation of adaptive Mo2N/MoS2/Ag coatings with high sulfur content. Surface and Coatings Technology 2009, Vol.203, p. 1304÷1309.
  • [2] Atnafu N.D., Belk J.H., Nobles O.M.: Modification of sheet metal forming fluids with dispersed nanoparticlwes for improved lubrication. Wear 2009, Vol. 267, Issues 5-8, p. 1220÷1225.
  • [3] Baker C.C., Hu J.J., Voevodin A.A.: Preparation of Al2O3/DLC/Au/MoS2 chameleon coatings for space and ambient environments. Surface and Coating Technology 2006, Vol. 201, Issue 7, p. 4224÷4229.
  • [4] Burakowski T.: Areologia. Wyd. Instytutu Technologii Eksploatacji, Radom 2007, 260 s.
  • [5] Chinas-Castillo F., Spikes H.A.: Mechanism of action of colloidal solid dispersions. Journal of Tribology 2003, Vol. 125, No. 3, p. 552÷557.
  • [6] Crockett R.: Boundary lubrication in natural articular joints. Tribology Letters 2009, Vol. 35, No. 3, p. 77÷84.
  • [7] Dobrzański L.A.: Podstawy nauki o materiałach i metaloznawstwo. WNT, Gliwice - Warszawa 2002, 1500 s.
  • [8] Douglas F. et al.: Silver, gold and the corresponding core shell nanoparticles: synthesis and characterization. Journal of Nanoparticle Research 2008, Vol. 10, Supplement 1, p. 97÷06.
  • [9] Emge E., Karthikeyan S., Rigney D.A.: The effects of sliding velocity and sliding time on nanocrystalline tribolayer development and properties in copper. Wear 2009, Vol. 267, Issues 1-4, p. 562÷567.
  • [10] Garkunov D. M. : Tribotechnology: Wear and No-wear. 4th ed. MAA Publishing House, Moscow 2001 (in Russian).
  • [11] Gonzalez C.M., Liu Y., Scaiano J.C.: Photochemical strategies for the facile synthesis of gold-silver alloy and coreshell bimetallic nanoparticles. Journal of Physical Chemistry C 2009, Vol. 113, Issue 27, p. 11861÷11867.
  • [12] Guo S., Dong S., Wang E.: Raspberry-like hierarchical Au/Pt nanoparticle assembling hollow spheres with nanochannels: An advanced nanoelectrocatalyst for the oxygen reduction reaction. Journal of Physical Chemistry C 2009, Vol. 113, Issue 14, p. 5485÷5492.
  • [13] Hernándes Battez A. et al.: Wear prevention behaviour on nanoparticle suspension under axtreme pressure conditions. Wear 2007, Vol. 263, Issues 7-12, p 1568÷1574.
  • [14] Hernándes Battez A. et al.: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 2008, Vol. 265, Issues 3-4, p. 422÷428.
  • [15] Hewa-Kasakarage N.N., Gurusinghe N.P., Zamkov M.: Blue-shifted emission in CdTe/ZnSe heterostructured nanocrystals. Journal of Physical Chemistry C 2009, Vol. 113, Issue 11, p. 4362÷4368.
  • [16] Hwang B.J. et al.: Size and alloying extent dependent physiochemical properties of Pt- Ag/C nanoparticles synthesized by the ethylene glycol method. Journal of Physical Chemistry C 2008, Vol. 112, Issue 7, p. 2370÷2377.
  • [17] Joly-Pottuz L. et al.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribology Letters 2008, Vol. 30, No. 1, p. 69÷80.
  • [18] Joly-Pottuz L. et al.: Diamond-derived carbon onions as lubricant additives. Tribology International 2008, Vol. 41, Issue 2, p. 69÷78.
  • [19] Kang X. et al.: Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear 2007, Vol. 265, Issues 1-2, p. 150÷154.
  • [20] Kim H.Y. et al.: Design of robust and reactive particles with atomic precision: 13Ag-Ih and 12Ag-1X (X = Pd, Pt, Au, Ni, or Cu) core-shell nanoparticles. Journal of Physical Chemistry C 2009, Vol. 113, Issue 35, p. 15559÷15564.
  • [21] Kotnarowski A.: Examination of Selective Transfer Phenomenon. In: Mechatronic Systems and Materials II. Solid State Phenomena 2009, Vol. 144, p. 279÷284.
  • [22] Kotnarowski A.: Selective Transfer Phenomenon in Copper-Steel Tribological Systems. Solid State Phenomena 2009, Volume 147-149, p. 558÷563.
  • [23] Kotnarowski A.: Konstytuowanie warstw ochronnych z nanoproszków miedzi I molibdenu w procesach tribologicznych. Monografia Nr 136. Wyd. Politechniki Radomskiej, Radom 2009, 184 s.
  • [24] Kotnarowski A.: Examination of Selective Transfer Phenomenon. Solid State Phenopmena, 2009, Vol. 144, p. 279÷284.
  • [25] Kotnarowski A.: Tribological Properties of Oils Modified with the Addition of Metal Nanoparticles. Solid State Phenomena, 2006, Vol.113, p. 393÷398.
  • [26] Köstenbauer H. et al.: Tribological properties of TiN/Ag nanocomposite coatings. Tribology Letters 2008, Vol. 30, No. 1, p. 53÷60.
  • [27] Lee K. et al.: Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters 2009, Vol. 35, No. 2, p.127÷131.
  • [28] Li B. et al.: Tribochemistry and antiwear mechanism of organic-inorganic nanoparticles as lubricant additives. Tribology Letters 2006, Vol. 22, Issue 1, p. 79÷84.
  • [29] Liu G. et al.: Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters 2004, Vol. 17, No. 4, p. 961÷966.
  • [30] Liu Q. et al.: Synthesis of CuPt nanorod catalysts with tunable lengths. Journal of the American Chemical Society 2009, Vol. 131, Issue 16, p. 5720÷5721.
  • [31] Luo J., Wen S., Huang P.: Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear 1996, Vol. 194, Issues 1-2. p. 107÷115.
  • [32] Martin J.M., Ohmae N. (ed.): Nanolubricants. John Wiley and Sons Ltd. 2008, 234 p.
  • [33] Moore D.: Principles and Applications of Tribology. Pergamon Press, Oxford 1975, 388 p.
  • [34] Muratore C., et al.: Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C. Wear 2006, Vol. 261, p. 797÷805.
  • [35] Muratore C., Hu J.J., Voevodin A.A.: Tribological coatings for lubrication over multiple thermal cycles, Thin Solid Films 2009, Vol. 202, Issue 8, p. 957÷962.
  • [36] Nanotechnology. Shaping the World Atom by Atom. The report prepared under the guidance of NSTC/CT. WTEC Hyper-Librarian, 1999.
  • [37] Peng D.X. et al.: Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribology International 2009, Vol. 42, Issue 6, p. 911÷917.
  • [38] Polyakov A. A.: No wear due to friction based on coherent inter-action of dislocations and vacancies. No - wear Effect and Tribotechnologies, no. 1, 1992, p. 13.
  • [39] Polyakov A. A., Ruzanov F. I.: Friction on the Basis of Self-organization. Ed. Nauka, Moscow 1992 (in Russian).
  • [40] Rapoport L. et al.: Mechanism of friction of fullerenes. Industrial Lubrication and Tribology 2002, Vol. 54, Issue 4, p. 171÷176.
  • [41] Sanchez S.I. et al.: Structural characterization of Pt-Pd and Pd-Pt core-shell nanoclusters in atomic resolution. Journal of the American Chemical Society 2009, Vol. 131, Issue 24, p. 8683÷8689.
  • [42] Shen M., Luo J., Wen S.: The tribological properties of oils added with diamond nano-particles. Tribology transactions 2001, Vol. 44, Issue 3, p. 494÷498.
  • [43] Voevodin A.A., Zabinski J.S.: Smart nanocomposite coatings with chameleon surface adaptation in tribologicalapplications. In: Nanostructured Thin Films and Nanodispersion Strenghtened Coatings. NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 155, p. 1÷8. Publisher: Springer Netherlands 2004.
  • [44] Wang. W., Zhu W., Xu H.: Monodisperse, mesoporous ZnxCd1-xS nanoparticles as stable visible-light-driven photocatalysts. Journal of Physical Chemistry C 2008, Vol. 112, Issue 43, p. 16754¸16758.
  • [45] Wang B. et al.: Tribological investigation of oleic acid modified copper nanoparticles. Journal of Beijing Jiaotong University 2006, Vol. 30, Issue 3, p. 43.
  • [46] Wu Y.Y., Tsui W.C., Liu T.C.: Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, Vol. 262, Issues 7-8, p. 819÷825.
  • [47] Xu T., Zhao J., Xu K.: The ball-bearing effect of diamond nanoparticles as an oil additive. Journal of Physics D: Applied Physics 1996, Vol. 29, Issue 11, p. 2932¸2937.
  • [48] Zappone B. et al.: Molecular aspects of boundary lubrication by human lubricin: Effect of disulfide bonds and enzymatic digestion. Langmuir 2008, Vol. 24, Issue 4, p. 1495÷1508.
  • [49] Zhang M. et al.: Performance of anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alphaolefin. Tribology International 2009, Vol. 42, Issue 7, p. 1029÷1039.
  • [50] Zhou C. et al.: First-principles study on water and oxygen adsorption on surface of indium oxide and titanium tin oxide nanoparticles. Journal of Physical Chemistry C 2008, Vol. 112, Issue 36, p. 14015÷14020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b76d93c6-d09f-49eb-b53c-a1b007e5f551
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.