PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Clinical advantages of using unflattened 6-MV and 10-MV photon beams generated by the medical accelerator Elekta Versa HD based on their dosimetric parameters in comparison to conventional beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photon beams with wide energy ranges from 4 MV to 25 MV are commonly used in radiotherapy nowadays. In recent years, there has been a strong interest in a certain modification of a radiotherapeutic apparatus by the application of the so-called flattening filter-free (FFF) beam. Several advantages of FFF beams over standard flattening filter (FF) beams are noticed, and this technical solution has aroused great interest among radiotherapeutic facilities. The goal of the present study is to investigate the differences between the conventional FF and unflattened FFF 6-MV and 10-MV photon beams in some basic dosimetric parameters and their influence on the whole radiotherapeutic treatment. The data provided here include the detailed characteristics as follows: percent depth dose (PDD), beam profile, edge of a half-profile, total scatter correction factor (TSCF) and head scatter correction factor (HSCF) for FF and FFF 6-MV and 10-MV photon beams from the Elekta Versa HD accelerator in the Katowice Oncology Center in Poland.
Czasopismo
Rocznik
Strony
77--86
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Katowice Oncology Center 26 Raciborska St., 41-074 Katowice, Poland
  • Institute of Physics University of Silesia 75 Pulku Piechoty 1A St., 41-500 Chorzow, Poland
  • Institute of Physics University of Silesia 75 Pulku Piechoty 1A St., 41-500 Chorzow, Poland
  • Katowice Oncology Center 26 Raciborska St., 41-074 Katowice, Poland
autor
  • Katowice Oncology Center 26 Raciborska St., 41-074 Katowice, Poland
Bibliografia
  • 1. Cashmore, J. (2008). The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys. Med. Biol., 53(7), 1933–1946.
  • 2. Kragl, G., af Wetterstedt, S., Knausl, B., Lind, M., McCavana, P., Knoos, T., McClean, B., & Georg, D. (2009).Dosimetric characteristics of 6 and 10 MV unfl attened photon beams. Radiother. Oncol., 93(1), 141–146.
  • 3. Narayanasamy, G., Saenz, D., Cruz, W., Ha, C. S.,Papanikolaou, N., & Stathakis, S. (2016). Commissioning an Elekta Versa HD linear accelerator. J. Appl. Clin. Med. Phys., 17(1), 179–191.
  • 4. Riis, H. L., Beierholm, A. R., Zimmermann, S. J.,Helt-Hansen, J., & Andersen, C. E. (2014). Measuring output factors for flattening filter free beams: A case study of the Elekta Versa HD. In ESTRO-33, 4–8 April 2014, Vienna, Austria. (EP-1525).
  • 5. Paynter, D., Weston, S. J., Cosgrove, V. P., Evans, J. A., & Thwaites, D. I. (2014). Beam characteristics of energy-matched flattening filter free beams. Med. Phys., 41, 052103.
  • 6. Mohammed, M., Chakir, E., Boukhal, H., Mroan, S., & El Bardouni, T. (2016). Evaluation of the dosimetric characteristics of 6 MV fl attened and unfl attened photon beam. Journal of King Saud University-Science, 29, 371–379.
  • 7. Pichandi, A., Ganesh, K. M., Jerin, A., Balaji, K., & Kilara, G. (2014). Analysis of physical parameters and determination of infl ection point for flattening filter free beams in medical linear accelerator. Reports of Practical Oncology and Radiotherapy, 19, 322–331.
  • 8. Ting, J. (2012). Facts, fiction and future of flattening filter free beams (FFF of FFF beams). In AAPM 54th Annual Meeting, 27 July – 2 August 2012, Melbourne, Australia. Available from https://www.aapm.org/meetings/2012AM/PRAbs.asp?mid=68&aid=19886.
  • 9. Fogliata, A., Garcia, R., Knoos, T., Nicolini, G., Clivio, A., Vanetti, E., Khamphan, C., & Cozzi, L. (2012).Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med. Phys., 39(10), 6455–6464.
  • 10. Vassiliev, O. N., Titt, U., Ponisch, F., Kry, S. F., Mohan, R., & Gillin, M. T. (2006). Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys. Med. Biol., 51, 1907–1917.
  • 11. Duane, S. (2013). Dosimetry for flattening filter free (FFF) linac beams and small fields (SF). National Physical Laboratory. Available from dl.icdst.org/pdfs/fi les2/58b4dd654592e98362ae5f3e87226fc1.pdf.
  • 12. Kry, S. F. (2013). Flattening filter free accelerators. The University of Texas, MD Anderson Cancer Center, Radiological Physics Center. Available from www.medfys.no/nfmf-documents/Opplastet/downloads/2012/07/Kry_FFF.pdf.Bereitgestellt von Uniwersytet Jagiellonski - Jagiellonian University | Heruntergeladen 20.11.19 12:19 UTC 86 B. Baic et al.
  • 13. Xiao, Y., Kry, S. F., Popple, R., Yorke, E., Papanikolaou, N., Stathakis, S., Xia, P., Huq, S., Bayouth, J., Galvin, J., & Yin, F. -F. (2015). Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J. Appl. Clin. Med. Phys., 16(3), 12–29.
  • 14. Budgell, G., Brown, K., Cashmore, J., Duane, S., Frame, J., Hardy, M., Paynter, D., & Thomas, R. (2016). IPEM Topical Report 1: Guidance on implementing flattening filter free (FFF) radiotherapy. Phys. Med. Biol., 61, 8360–8394.
  • 15. Garcia, R. (2011). Recommendations on QA of FFF beams. Berlin: Varian Oncology Summit. 16. Podgorsak, E. B. (2005). Radiation oncology physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency.
  • 17. Ponisch, F., Titt, U., Vassiliev, O. N., Kry, S. F., & Mohan, R. (2006). Properties of unflattened photon beams shaped by a multileaf collimator. Med. Phys.,33(6), 1738–1746.
  • 18. Followill, D., Tailor, R., Tello, V., & Hanson, W. (1998). An empirical relationship for determining photon beam quality in TG-21 from a ratio of percent depth doses. Med. Phys., 25, 1202–1205.
  • 19. Allen, J. (2014). High dose rate mode (flattening filter free) radiotherapy. Clinical advantages of high dose rate mode, available with Agility™ on Elekta’s Versa HD™ linear accelerator. Crawley: Elekta Ltd.
  • 20. van Gasteren, J. J. M., Heukelom, S., Jager, H. N., Mijnheer, B. J., van der Laarse, R., van Kleffens, H. J., Venselaar, J. L. M., & Westermann, C. F. (1998).Determination and use of scatter correction factors of megavoltage photon beams. Netherlands Commission on Radiation Dosimetry. (NCRD Report no. 12).
  • 21. Kry, S. F., Vassiliev, O. N., & Mohan, R. (2010). Outof-fi eld photon dose following removal of the flattening filter from a medical accelerator. Phys. Med. Biol., 55(8), 2155–2166.
  • 22. Cashmore, J. (2013). Operation, characterisation and physical modelling of unflattened medical linear accelerator beams and their application to radiotherapy treatment planning. Unpublished PhD Thesis, University of Birmingham.
  • 23. Zhu, T. C. (2012). Dosimetric challenge for flattening filter free (FFF) photon beams. In AAPM DVC Spring Symposium, April 20, 2012, Philadelphia, USA.American Association of Physicists in Medicine.
  • 24. ICRU. (1999).ICRU Report 62: Prescribing, recording and reporting photon beam therapy. (Supplement to ICRU Report 50). Journal of the ICRU, 32(1).
  • 25. Georg, D., Knoos, T., & McClean, B. (2011). Current status and future perspective of flattening filter free photon beams. Med. Phys., 38, 1280–1283.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b76d54f9-2fa1-4620-8d5b-0b0c826a008f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.