PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of selected properties and surface quality of cured pre-impregnated carbon-fiber fabrics after exposure to sulphuric acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with changes in selected properties of composite material and surface degradation after exposure to an acidic environment. A carbon fiber-reinforced composite (CFRP) produced from prepregs was tested. The weight change, micro-hardness, and surface degradation of the CFRP composite made of cured pre-impregnated laminates were evaluated in this study. Material consisting of a DT121R epoxy resin matrix with high reactivity and high viscosity, with two reinforcing carbon fabrics layers, is characterized by a low value of tensile strength. Evaluation of changes in the material properties was performed before and after exposure to specific environmental conditions, which are achieved by using a chemical solution of 15% H2SO4 at various temperatures. Subsequently, the effect of 15% H2SO4 at various temperatures on the material properties was monitored. The specimens were immersed in the solution for up to 3 and 6 weeks at the temperatures of 23°C, 40°C, and 60°C. It was found out, that the degradation of the composite material is conditioned by the aging of the epoxy resin (matrix). Carbon fibers (reinforcement) are relatively stable. The weight change, micro-hardness, and surface quality depend on the time of exposure to acidic solution and temperature. The micro-hardness tests show a significant influence on exposure time. The biggest changes in weight change and surface quality of the CFRP composite were observed after exposure at the temperature of 60°C.
Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 11 poz,. rys., tab.
Twórcy
  • University of Žilina, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak republic
  • University of Žilina, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak republic
  • University of Žilina, Department of Materials Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovak republic
  • Tomas Bata University, Centre of Polymer Systems, tř. Tomáše Bati 5678, 760 01 Zlín, Czech republic
Bibliografia
  • 1. Ab Ghani, A.F., Yaakob, M.Y., Salim, M.N., Mahmud, J., 2019. Hardness Assessment of Hybrid Composite CFRP and GFRP. International Journal of Recent Technology and Engineering (IJRTE), 8(1S5), 86-93.
  • 2. Bere, P., Sabau, E., Dudescu, C., Nematu, C., Fărtan, M., 2019. Experimental research regarding carbon fiber/epoxy material manufactured by auto-clave process. MATEC Web of Conferences, 299(2), 06005, DOI: 10.1051/matecconf/201929906005.
  • 3. de Paiva, J.M.F., Mayer, S., Rezende, M.C., 2006. Comparison of tensile strength of different carbon fabric reinforced epoxy composites. Materi-als Research, 9(1), 83-89, DOI: 10.1590/S1516-14392006000100016.
  • 4. Grabco, D., Shikimaka, O., Harea, E., 2008. Translation–rotation plasticity as basic mechanism of plastic deformation in macro-, micro- and nanoindentation processes. Journal of Physics D: Applied Physics, 41(7), 074016, DOI: 10.1088/0022-3727/41/7/074016.
  • 5. Ji, Y., Kim, Y. J., 2017. Effects of Sulfuric Acid on Durability Characteristics of CFRP Composite Sheets. Journal of Materials in Civil Engineering, 29(10), 04017159, DOI: 10.1061/(ASCE)MT.1943-5533.0002008.
  • 6. Kojnoková, T., Markovičová, L., Nový, F., 2020. The changes of LD-PE films after exposure in different media. Production engineering archives, 26(4), 185-189, DOI: 10.30657/pea.2020.26.32.
  • 7. Markovičová, L., Zatkalíková, V., 2017. Corrosive effect of environmental change on selected properties of polymer composites. IOP Conf. Ser.: Mater. Sci. Eng., 266(1), 01201, DOI: 10.1088/1757-899X/266/1/012010.
  • 8. Mohamed, Y.S., El-Gamal, H., Zaghloul, M.M.Y., 2018. Micro-hardness be-havior of fiber reinforced thermosetting composites embedded with cel-lulose nanocrystals. Alexandria Engineering Journal, 57(4), 4113-4119, DOI: 10.1016/j.aej.2018.10.012.
  • 9. Parnas, L., Katırcı, N., 2002. Design of fiber-reinforced composite pressure vessels under various loading conditions. Composite Structures, 58(1), 83-95, DOI: 10.1016/S0263-8223(02)00037-5.
  • 10. Singer, G., Sinn, G., Schwendtner, K., Lichtenegger, H.C., Wan-Wendner, R., 2018. Time-dependent changes of mechanical properties of polymer-based composite materials for adhesive anchor systems. Composite Structures, 196, 155-162, DOI: 10.1016/j.compstruct.2018.04.076.
  • 11. Zhu, J.H., Chen, P., Su, M., Pei, C., Xing, F., 2019. Recycling of carbon fibre reinforced plastics by electrically driven heterogenous catalytic degrada-tion of epoxy resin. Green Chemistry, 21(22), 1635-1647, DOI: 10.1039/C8GC03672A
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b768cdda-6dda-4be0-91b0-2608cafd7396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.