Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A differential equation for temporal dependence of the liquid height of rise in a microchannel consisted of two parallel plates has been modified to account for a dielectrophoretic force, which is a result of an electric field occurring between the plates. The equation takes into account viscous, surface tension, gravitational forces, capillary entrance pressure and dielectrophoretic force. Numerical calculations have been performed for 2-propanol as a liquid. Time dependence of the height of rise and the velocity of liquid front has been obtained for two cases of the initial liquid height and several values of a voltage applied to the plates.
Słowa kluczowe
Rocznik
Tom
Strony
109--115
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Fiszera 14, Poland
autor
Bibliografia
- [1] Pethig R.: Review article dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2010), 2, 022811.
- [2] Lackowski M., Krupa A., Butrymowicz D.: Dielectrophoresis flow control in microchannels. J. Electrostat. 71(2013), 5, 921–925.
- [3] Lackowski M., Nowakowska H.: Numerical modeling of dielecrophoresis effect in microchannel flow controller–comparison of calculation methods. Przegląd Elektrotechniczny 92(2016), 8, 95–98.
- [4] Lackowski M.: Dielectrophoresis flow control of volatile fluids in microchannels. Int. J. Therm. Sci. 24(2015), 5, 1–5.
- [5] Washburn E. W.: The dynamics of capillary flow. Physical Rev. 17(1921), 3, 273–283.
- [6] Hamraoui A., Nylander T.: Analytical approach for the Lucas–Washburn equation. J. Colloid Interf. Sci. 250(2002), 2, 415–421.
- [7] Waghmare P. R., Mitra S. K.: A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid. Nanofluid. 12(2012), (1–4), 53–63.
- [8] Wu P., Zhang H., Nikolov A., Wasan D.: Rise of the main meniscus in rectangular capillaries: Experiments and modeling. J. Colloid Interf. Sci. 461(2016), nr ??? , 195–202.
- [9] Xiao Y., Yang F., Pitchumani R.: A generalized analysis of capillary flows in channels. J. Colloid Interf. Sci. 298(2006), 2, 880–888.
- [10] Hong S.J., Hong J., Seo H.W., Lee S.J., Chung S.K.: Fast electrically driven capillary rise using overdrive voltage. Langmuir 31(2015), 51, 13718–13724.
- [11] Prins M.W.J., Welters W.J.J., Weekamp J.W.: Fluid control in multichannel structures by electrocapillary pressure. Science 291(2001), (5502), 277–280.
- [12] Levine S., Reed P., Watson E.: A theory of the rate of rise of a liquid in a capillary. In: Colloid and Interface Science, Vol. III (M. Kerker, Ed.) Academic, New York 1976, 403-419
- [13] Jones T.B.: On the relationship of dielectrophoresis and electrowetting. Langmuir 18(2002), 4437–4443.
- [14] www.comsol.com
- [15] Dortmund Data Bank http://ddbonline.ddbst.com/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b76657f7-2278-4204-86d7-d256ca956e7b