PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Silicon is a major nutrient for siliceous primary producers, which can become a potential limiting nutrient in oligotrophic areas. Most of the silicon inputs to the marine environment come from continental discharges, from both superficial and ground waters. This study analyses the main sources of silicon and their dynamics along the southernmost 43 km of shoreline in the Gulf of Valencia (Western Mediterranean Sea). The salinity and silicate concentration in the different compartments (springs, freshwater wells, beach groundwater, surf zone and coastal waters) in this coastal area were determined. In addition, chlorophyll a and phytoplankton community were analyzed in the surf zone and coastal waters. Silicate concentrations in freshwater wells ranged between 130 and 150 μM, whereas concentrations of this nutrient declined to 49 μM in freshwater-seawater mixture transects. At the same time, there was a positive gradient in silicate for both freshwater and coastal waters southward. An amount of 18.7 t of dissolved silicate was estimated in the nearest first kilometre nearest to the coastline, 6 t of this silicate belonged to the background sea level. On the other hand, the sum of the main rivers in the area supplies 1.6 t of dissolved silicate per day. This implies that a large amount of the remaining 11.1 t must derive from submarine groundwater discharges, which would thus represent 59% of the coastal dissolved silicate budget. Overall, it is suggested that a subterranean transport pathway must contribute considerably to silicate concentrations throughout this zone, which is characterized as permeable.
Czasopismo
Rocznik
Strony
52--64
Opis fizyczny
Bibliogr. 79 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • Institut d’Investigació per a la Gestió Integrada de Zones Costaneres (IGIC), Universitat Politècnica de València, Grau de Gandia, Spain
  • Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
autor
  • Institut d’Investigació per a la Gestió Integrada de Zones Costaneres (IGIC), Universitat Politècnica de València, Grau de Gandia, Spain
  • Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
  • Centro CEP, Campus São Lourenço do Sul, Universidade Federal do Rio Grande, São Lourenço do Sul, Brazil
autor
  • Institut d’Investigació per a la Gestió Integrada de Zones Costaneres (IGIC), Universitat Politècnica de València, Grau de Gandia, Spain
Bibliografia
  • [1] Aktan, Y., 2011. Large-scale patterns in summer surface water phytoplankton (except picophytoplankton) in the Eastern Mediterranean. Estuar. Coast. Shelf Sci. 91 (1), 551-558, http://dx. doi.org/10.1016/j.ecss.2010.12.010.
  • [2] Albarracín, S., Alcántara-Carrió, J., Barranco, A., García, M. J. S., Bouzas, Á. F., Salgado, J. R., 2013. Seismic evidence for the preservation of several stacked Pleistocene coastal barrier/lagoon systems on the Gulf of Valencia continental shelf (western Mediterranean). Geo-Mar. Lett. 33 (2-3), 217-223, http://dx. doi.org/10.1007/s00367-012-0315-x.
  • [3] Aminot, A., Chaussepied, M., 1983. Manuel des analyses chimiques en milieu marin. Centre National pour l'Explotation des Oceans, Brest, 396 pp.
  • [4] Andersen, P., Throndsen, J., 2003. Estimating cell numbers. In: Hallegraef, G. M., Anderson, D. M., Cembella, A. D. (Eds.), Manual on Harmful Marine Microalgae. Intergovernmental Oceanographic Commission of UNESCO, Paris, 99-129.
  • [5] APHA, AWWA, WEF, American Public Health, American Water Works Association, Water Environment Federation, 2012. Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association, Washington, 1360 pp.
  • [6] Bartoli, G., Migon, C., Losno, R., 2005. Atmospheric input of dissolved inorganic phosphorus and silicon to the coastal northwestern Mediterranean Sea: fluxes, variability and possible impact on phytoplankton dynamics. Deep-Sea Res. Pt. I 52 (11), 2005-2016, http://dx.doi.org/10.1016/j.dsr.2005.06.006.
  • [7] Bergamasco, A., Malanotte-Rizzoli, P., 2010. The circulation of the Mediterranean Sea: a historical review of experimental investigations. Adv. Oceanogr. Limnol. 1 (1), 11-28, http://dx.doi.org/10.1080/19475721.2010.491656.
  • [8] Bergametti, G., Gomes, L., Remoudaki, E., Desbois, M., Martin, D., Buat-Ménard, P., 1989. Present transport and deposition patterns of African dusts to the north-western Mediterraneann. In: Leinen, M., Sarnthein, M. (Eds.), Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic, Dordrecht, 227-252.
  • [9] Buesseler, K. O., 1998. The decoupling of production and particulate export in the surface ocean. Glob. Biogeochem. Cycl. 12 (2), 297-310, http://dx.doi.org/10.1029/97GB03366.
  • [10] Carbo, P., Krom, M. D., Homoky, W. B., Benning, L. G., Herut, B., 2005. Impact of atmospheric deposition on N and P geochemistry in the southeastern Levantine basin. Deep-Sea Res. Pt. II 52 (22-23), 3041-3053, http://dx.doi.org/10.1016/j.dsr2.2005.08.014.
  • [11] Charette, M. A., Sholkovitz, E. R., 2006. Trace element cycling in a subterranean estuary: Part 2, Geochemistry of the pore water. Geochim. Cosmochim. Acta 70 (4), 811-826, http://dx.doi.org/10.1016/j.gca.2005.10.019.
  • [12] CHJ, Confederación Hidrográfica del Júcar, 2015. Plan hidrológico de la demarcación hidrográfica del Júcar. Memoria-Anejo 3 Usos y demandas de agua, Ciclo de planificación hidrológica 2015-2021, Available from: http://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2015-2021-Plan-Hidrologico-cuenca.aspx (accessed 01.04.16).
  • [13] CHJ, Confederación Hidrográfica del Júcar, 2016. http://www.chj.es/es-es/ciudadano/modelossolicitud/Paginas/modelos-y-hojas-informativas.aspx (accessed 01.04.16).
  • [14] Ciotti, A. M., Odebrecht, C., Fillmann, G., Möller Jr., O. O., 1995. Freshwater outflow and Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Cont. Shelf Res. 15 (14), 1737-1756, http://dx.doi.org/10.1016/0278-4343(94)00091-Z.
  • [15] Conley, D. J., Likens, G. E., Buso, D. C., Saccone, L., Bailey, S. W., Johnson, C. E., 2008. Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Glob. Change Biol. 14 (11), 2548-2554, http://dx.doi.org/10.1111/j.1365-2486.2008.01667.x.
  • [16] Corbett, D. R., Chanton, J., Burnett, W., Dillon, K., Rutkowski, C., Fourqurean, J., 1999. Patterns of groundwater discharge into Florida Bay. Limnol. Oceanogr. 44 (4), 1045-1055, http://dx.doi.org/10.4319/lo.1999.44.4.1045.
  • [17] Corbett, D. R., Dillon, K., Burnett, W., Chanton, J., 2000. Estimating the groundwater contribution into Florida Bay via natural tracers 222Rn and CH4. Limnol. Oceanogr. 45 (7), 1546-1557, http://dx.doi.org/10.4319/lo.2000.45.7.1546.
  • [18] Cozzi, S., Giani, M., 2011. River water and nutrient discharges in the Northern Adriatic Sea: current importance and long term changes. Cont. Shelf. Res. 31 (18), 1881-1893, http://dx.doi.org/10.1016/j.csr.2011.08.010.
  • [19] Crispi, G., Mosetti, R., Solidoro, C., Crise, A., 2001. Nutrients cycling in Mediterranean basins: the role of the biological pump in the trophic regime. Ecol. Model. 138 (1-3), 101-114, http://dx.doi.org/10.1016/S0304-3800(00)00396-3.
  • [20] Dafner, E. V., Boscolo, R., Bryden, H. L., 2003. The N:Si:P molar ratio in the Strait of Gibraltar. Geophys. Res. Lett. 30 (10), 1506, http://dx.doi.org/10.1029/2002GL016274.
  • [21] de Fommervault, O. P., Migon, C., d'Alcalà, M. R., Coppola, L., 2015. Temporal variability of nutrient concentrations in the north-western Mediterranean sea (DYFAMED time-series station). Deep-Sea Res. Pt. I 100, 1-12, http://dx.doi.org/10.1016/j.dsr.;1; 2015.02.006.
  • [22] Dugdale, R. C., Wilkerson, F. P., 2001. Sources and fates of silicon in the ocean: the role of diatoms in the climate and glacial cycles. Sci. Mar. 65 (2), 141-152.
  • [23] Dupré, M., Fumanal, M. P., Sanjaume, E., Santisteban, C., Usera, J., Viñals, M. J., 1988. Quaternary evolution of the Pego coastal lagoon (Southern Valencia, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 68 (2-4), 291-299, http://dx.doi.org/10.1016/0031-0182(88)90046-6.
  • [24] European Commission, 2013. Commission Decision of 20 September 2013 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise and repealing Decision 2008/915/EC. Off. J. Eur. Union L266, 1-47.
  • [25] Falco, S., Hermosilla, Z., Romero, I., Martínez, R., Sierra, J. P., Mösso, C., Mestres, M., 2007. Spatial and temporal patterns of water quality in Cullera Bay. J. Coastal Res. 47 (SI), 40-47, http://dx.doi.org/10.2112/1551-5036-47.sp1.40.
  • [26] Falco, S., Niencheski, L. F., Rodilla, M., Romero, I., del Río, J. G., Sierra, J. P., Mösso, C., 2010. Nutrient flux and budget in the Ebro estuary. Estuar. Coast. Shelf Sci. 87 (1), 92-102, http://dx.doi.org/10.1016/j.ecss.2009.12.020.
  • [27] Frings, P. J., Clymans, W., Fontorbe, G., Christina, L., Conley, D. J., 2016. The continental Si cycle and its impact on the ocean Si isotope budget. Chem. Geol. 425, 12-36, http://dx.doi.org/10.1016/j.chemgeo.2016.01.020.
  • [28] Gadea, I., Rodilla, M., Sospedra, J., Falco, S., Morata, T., 2013. Seasonal dynamics of the phytoplankton community in the Gandia coastal area, southern Gulf of Valencia. Thalassas 29 (1), 35-58.
  • [29] García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., Beguería, S., 2011. Mediterranean water resources in a global change scenario. Earth Sci. Rev. 105 (3-4), 121-139, http://dx.doi.org/10.1016/j.earscirev.2011.01.006.
  • [30] GESAMP, Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 1987. Land/Sea Boundary Flux of Contaminants: Contributions from Rivers, Report and Studies No. 32. NESCO/GESAMP, 172 pp.
  • [31] Goldman, J. C., 1993. Potential role of large oceanic diatoms in New primary production. Deep-Sea Res. Pt. I 40 (1), 159-168, http://dx.doi.org/10.1016/0967-0637(93)90059-C.
  • [32] Guerzoni, S., Molinaroli, E., Chester, R., 1997. Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications. Deep-Sea Res. Pt. II 44 (3-4), 631-654, http://dx.doi.org/10.1016/S0967-0645(96)00096-3.
  • [33] Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M.-D., Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam, C., Soudine, A., Ziveri, P., 1999. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Prog. Oceanogr. 44 (1-3), 147-190, http://dx.doi.org/10.1016/S0079-6611(99)00024-5.
  • [34] Hopkins, T. S., 1985. Physics of the sea. In: Margalef, R. (Ed.), Western Mediterranean. Pergamon Press, Oxford, 100-125.
  • [35] Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., 1996. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35 (1), 75-139, http://dx.doi.org/10.1007/BF02179825.
  • [36] Humborg, C., Ittekkot, V., Cociasu, A., Bodungen, B., 1997. Effect of Danube River dam on Black Sea biogeochemistry and ekosystem structure. Nature 386, 385-388, http://dx.doi.org/10.1038/386385a0.
  • [37] IGME, Instituto Geológico y Minero de España, 1989. Las aguas subterráneas en la Comunidad Valenciana. Uso, calidad y perspectivas de utilización. IGME, Madrid, 298 pp.
  • [38] IGME, Instituto Geológico y Minero de España, DPA, Diputación Provincial de Alicante, 2007. Determinación de la relación entre zonas húmedas y acuíferos asociados mediante modelos de flujos y transporte. Aplicación a la gestión sostenible del acuífero Pego-Dénia. IGME, Alicante, 241 pp.
  • [39] IGME, Instituto Geológico y Minero de España, DPA, Diputación Provincial de Alicante, 2013. Modelo de densidad variable en régimen transitorio del acuífero Pego-Oliva. 110 pp.
  • [40] Koçak, M., Nimmo, M., Kubilay, N., Herut, B., 2004. Spatio-temporal aerosol trace metal concentrations and sources in the Levantine Basin of the Eastern Mediterranean. Atmos. Environ. 38 (14), 213-2144, http://dx.doi.org/10.1016/j.atmosenv.2004.01.020.
  • [41] Koçak, M., Kubilay, N., Tugrul, S., Mihalopoulos, N., 2010. Atmospheric nutrient inputs to the northern levantine basin from a long-term observation: sources and comparison with riverine inputs. Biogeosciences 7 (12), 4037-4050, http://dx.doi.org/10.5194/bg-7-4037-2010.
  • [42] Krest, J. M., Moore, W. S., Gardner, L. R., Morris, J., 2000. Marsh nutrient export supplied by groundwater discharge: evidence from Ra measurements. Glob. Biogeochem. Cycl. 14 (1), 167-176, http://dx.doi.org/10.1029/1999GB001197.
  • [43] Lucea, A., Duarte, C. M., Agustí, S., Kennedy, H., 2005. Nutrient dynamics and ecosystem metabolism in the Bay of Blanes (NW Mediterranean). Biogeochemistry 73 (2), 303-323, http://dx.doi.org/10.1007/s10533-004-0059-4.
  • [44] Ludwig, W., Dumont, E., Meybeck, M., Heussner, S., 2009. River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog. Oceanogr. 80 (3-4), 199-217, http://dx.doi.org/10.1016/j.pocean.2009.02.001.
  • [45] MARM, Ministerio de Medio Ambiente, Medio Rural y Marino, 2010. Guía práctica de la fertilización racional de los cultivos en España, Ministerio de Medio Ambiente y Medio Rural y Marino, Secretaría General Técnica. Centro de publicaciones, 259 pp.
  • [46] Marty, J.-C., Chiavérini, J., Pizay, M.-D., Avril, B., 2002. Seasonal and interannual dynamics of nutrients and phytoplankton pigments In the western Mediterranean Sea at the DYFAMED time-series station (1991-1999). Deep-Sea Res. Pt. II 49 (11), 1965-1985, http://dx.doi.org/10.1016/S0967-0645(02)00022-X.
  • [47] MED-HYCOS, The Mediterranean Hydrological Cycle Observing System, 2001. MED-HYCOS period II, period 2002-2005, Rep. no. 17. p. 36.
  • [48] Moore, W. S., 1999. The subterranean estuary: a reaction zone of groundwater and sea water. Mar. Chem. 65 (1-2), 111-126, http://dx.doi.org/10.1016/S0304-4203(99)00014-6.
  • [49] Nelson, D. M., Tréguer, P., Brzeziński, M. A., Leynaert, A., Quéguiner, B., 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycl. 9 (3), 359-372, http://dx.doi.org/10.1029/95GB01070.
  • [50] Niencheski, L. F. H., Windom, H. L., Moore, W. S., Jahnke, R. A., 2007. Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar. Chem. 106 (3-4), 546-561, http://dx.doi.org/10.1016/j.marchem.2007.06.004.
  • [51] Niencheski, L. F. H., Windom, H. L., Moore, W. S., 2014. Controls on water column chemistry of the southern Brazilian Continental shelf. Cont. Shelf. Res. 88, 126-139, http://dx.doi.org/10.1016/j.csr.2014.07.007.
  • [52] Nixon, S. W., 2003. Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? Ambio 32, 30-39.
  • [53] Olivos, A., Masó, M., Camp, J., 2002. Continental runoff of nutrients and their possible influence over stoichiometric ratios (DIN:P:Si) in the northeastern Mediterranean waters of Spain (Catalan Sea). Cienc. Mar. 28, 393-406.
  • [54] Pavlidou, A., Papadopoulos, V. P., Hatzianestis, I., Simboura, N., Patiris, D., Tsabaris, C., 2014. Chemical inputs from a karstic submarine groundwater discharge (SGD) into an oligotrophic Mediterranean coastal area. Sci. Total Environ. 488-489, 1-13.
  • [55] Pernía, J. M., Cuesta, F., Ballesteros, B., Barba-Romero, J., García, E., 1996. Los recursos hídricos en la Comunidad Valenciana. IGME, p. 77.
  • [56] Redfield, A. C., Ketchum, B. H., Richards, F. A., 1963. The influence of organisms on the composition of sea-water. In: Hill, M. N. (Ed.), The Sea, vol. 2. Wiley Interscience, New York, 26-77.
  • [57] Rey, J., Fumanal, M. P., 1996. The Valencian coast (western Mediterranean): neotectonics and geomorphology. Quat. Sci. Rev. 15 (8-9), 789-802, http://dx.doi.org/10.1016/S0277-3791(96)00069-8.
  • [58] Ribera d'Alcalà, M., Brunet, C., Conversano, F., Corato, F., Lavezza, R., 2009. Nutrient and pigment distributions in the southern Tyrrhenian Sea during mid-summer and late fall 2005. Deep-Sea Res. Pt. II 56 (11-12), 676-686, http://dx.doi.org/10.1016/j.dsr2.2008.07.028.
  • [59] Rico-Amorós, M., Hernández-Hernández, M., 2008. Ordenación del territorio, escasez de recursos hídricos, competencia de usos e intensificación de las demandas urbano-turísticas en la Comunidad Valenciana. Doc. Anàl. Geogr. 51, 79-109.
  • [60] Rodellas, V., Garcia-Orellana, J., Masqué, P., Feldman, M., Weinstein, Y., 2015. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc. Natl. Acad. Sci. U. S. A. 112 (13), 3926-3930, http://dx.doi.org/10.1073/pnas.1419049112.
  • [61] Sabater, S., Feio, M. J., Grac¸a, M. A. S., Muñoz, I., Romaní, A. M., 2009. The Iberian rivers. In: Tockner, K., Uehlinger, U., Robinson, C. T. (Eds.), Rivers of Europe. Acad. Press, London, 113-150.
  • [62] Sala, M. M., Peters, F., Gasol, J. M., Pedrós-Alió, C., Marrasé, C., Vaqué, D., 2002. Seasonal and spatial variations in the nutrie nt limitation of bacterioplankton growth in the northwestern Mediterranean. Aquat. Microb. Ecol. 27 (1), 47-56.
  • [63] Santos, I. R., Machado, M. I. C. S., Niencheski, L. F., Burnett, W., Milani, I., Andrade, C., Peterson, R., Chanton, J., Baisch, P., 2008. Major ion chemistry in a freshwater coastal lagoon from Southern Brazil (Mangueira Lagoon): Influence of groundwater inputs. Aquat. Geochem. 14 (2), 133-146, http://dx.doi.org/10.1007/s10498-008-9029-0.
  • [64] Schroeder, K., Gasparini, G. P., Borghini, M., Cerrati, G., Delfanti, R., 2010. Biogeochemical tracers and fluxes in the Western Mediterranean Sea, spring 2005. J. Mar. Syst. 80 (1-2), 8-24, http://dx.doi.org/10.1016/j.jmarsys.2009.08.002.
  • [65] Sebastiá, M. T., Rodilla, M., 2013. Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ. Manage. 51 (1), 225-240, http://dx.doi.org/10.1007/s00267-012-9986-3.
  • [66] Sebastiá, M. T., Estornell, J., Rodilla, M., Martí, J., Falco, S., 2012a. Estimation of chlorophyll «A» on the Mediterranean coast using a QuickBird image. Rev. Teledetec. 37, 23-33.
  • [67] Sebastiá, M. T., Rodilla, M., Sanchis, J. A., Altur, V., Gadea, I., Falco, S., 2012b. Influence of nutrient inputs from a wetland dominatem by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric. Ecosyst. Environ. 152, 10-20, http://dx.doi.org/10.1016/j.agee.2012.02.006.
  • [68] Sebastiá, M. T., Rodilla, M., Falco, S., Sanchis, J. A., 2013. Analysis of the effects of wet and dry seasons on a Mediterranean river basin: consequences for coastal waters and its quality management. Ocean Coast. Manage. 78, 45-55, http://dx.doi.org/10.1016/j.ocecoaman.2013.03.012.
  • [69] Smetacek, V., 1999. Diatoms and the ocean carbon cycle. Protist 150 (1), 25-32, http://dx.doi.org/10.1016/S1434-4610(99)70006-4.
  • [70] Sospedra, J., Falco, S., Morata, T., Gadea, I., Rodilla, M., 2015. Benthic fluxes of oxygen and nutrients in sublitoral fine sands in a north-western Mediterranean coastal area. Cont. Shelf. Res. 97, 32-42, http://dx.doi.org/10.1016/j.csr.2015.02.002.
  • [71] Theodosi, C., Markaki, Z., Mihalopoulos, N., 2010. Iron speciation, solubility and temporal variability in wet and dry deposition in the Eastern Mediterranean. Mar. Chem. 120 (1-4), 100-107, http://dx.doi.org/10.1016/j.marchem.2008.05.004.
  • [72] Throndsen, J., 1978. Preservation and storage. In: Sournia, A. (Ed.), Phytoplankton Manual. UNESCO, Paris, 69-74.
  • [73] Tomas, C., 1997. Identifying Marine Phytoplankton. Acad. Press Inc., London, 858 pp.
  • [74] Tovar-Sánchez, A., Basterretxea, G., Rodellas, V., Sánchez-Quiles, D., García-Orellana, J., Masqué, P., Jordi, A., López, J. M., Garcia-Solsona, E., 2014. Contribution of groundwater discharge to the coastal dissolved nutrients and trace metal concentration In Majorca Island: karstic vs detrital systems. Environ. Sci. Technol. 48, 11819-11827.
  • [75] Utermohl, H., 1958. Zur wervollkommung der quantitative phytoplankton methodic. Mitteilungen-Internationale Vereininung für Limnology 9, 1-38.
  • [76] Vörösmarty, C. J., Fekete, B. M., Tucker, B. A., 1998. Global River Discharge 1807-1991, RivDIS v1.1, Available from: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=199.
  • [77] Windom, H., Moore, W. S., Niencheski, L. F., Jahnke, R., 2006. Submarine groundwater discharge: a large, previously unrecognized source of dissolved iron to the South Atlantic Ocean. Mar. Chem. 102 (3-4), 252-266, http://dx.doi.org/10.1016/j.marchem.2006.06.016.
  • [78] Zenetos, A., Siokou-Frangou, I., Gotsis-Skretas, O., 2002. The Mediterranean Sea — blue oxygen-rich, nutrient-poor waters. Europe's Biodiversity: biogeographical regions and seas. Eur. Environ. Agency 22.
  • [79] Zornoza-Gallego, C., 2013. Crecimiento urbanístico en la zona costera de la Comunidad Valenciana (1987-2009): análisis y perspectivas de futuro, vol. 12. Universitat de València, Valencia, 117 pp.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b765327c-7eb5-446a-a9bf-5984fb5f8741
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.