PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dinosaur behaviour in an Early Jurassic palaeoecosystem – uppermost Elliot Formation, Ha Nohana, Lesotho

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Ha Nohana palaeosurface in southern Lesotho preserves tridactyl and tetradactyl tracks and trackways attributable to Early Jurassic bipedal, theropod-like dinosaurs. Complementary sedimentological and ichnological observations along the palaeosurface and in the strata below and above it allow detailed interpretations of climatically driven changes in this southern Gondwana palaeoecosystem. Sedimentological evidence suggests trackmaking under a semi-arid climate with heavy storms and episodic flash flooding that induced ephemeral, unconfined sheetwashes. The palaeosurface is overlain by rhythmically bedded, organic-matter rich mudstones that formed in a deep, stratified lake indicative of a longer and wetter period in the history of the site. The unique morphological details of the Ha Nohana tracks help refine the properties of the substrate during track making, the ichnotaxonomic affinities of the footprints and the interpretation of the foot movement relative to the substrate. Two footprint morphotypes, ~ 300 m apart, are defined on the palaeosurface. Tracks of morphotype I are tridactyl, shallow, contain digital pad impressions and were impressed on a firm, sand rippled substrate that underwent desiccation. Conversely, tracks of morphotype II are tetradactyl, deep, and have an elongated posterior region. These tracks are preserved on the surface of a massive sandstone and are associated with soft sediment collapse structures related to the animal’s foot sinking into the water-saturated, malleable sediment layer. Morphotype II tracks show that as the animal waded across the substrate, the liquefied sediment lost its cohesive strength and could only partially support the weight of the animal. In so doing, the animal’s foot sunk deep enough into the sediment such that the impression of the metatarsal and digit I (hallux) are now visible. Thus, the palaeosurface was walked on by small-to-medium sized theropods that traversed over ripple marks in firmer moist sand, as well as a larger theropod that tottered through water-logged sand.
Rocznik
Strony
163--179
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
autor
  • Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
autor
  • Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
autor
  • Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
Bibliografia
  • 1. Abrahams, M., Bordy, E. M., Sciscio, L. & Knoll, F., 2017. Scampering, trotting, walking tridactyl bipedal dinosaurs in southern Africa: ichnological account of a Lower Jurassic palaeosurface (upper Elliot Formation, Roma Valley) in Lesotho. Historical Biology, 29: 958-975.
  • 2. Alexander, R. McN., 1976. Estimates of speeds of dinosaurs. Nature, 261 (5556): 129-130.
  • 3. Ambrose, D., 1991. A tentative history of Lesotho palaeontology. Journal of Research, National University of Lesotho, 1: 1-38.
  • 4. Ambrose, D., 2016. A Note on Ellenberger and a Checklist of Lesotho Fossil Footprint Sites. House 9 Publications & Mohokare Trust, Roma, Maseru, 50 pp.
  • 5. Avanzini, M., Piňuela, L. & García-Ramos, J. C., 2012. Late Jurassic footprints reveal walking kinematics of theropod dinosaurs. Lethaia, 45: 238-252.
  • 6. Belvedere, M., Mietto, P. & Ishigaki, S., 2010. A Late Jurassic diverse ichnocoenosis from the siliciclastic Iouaridene Formation (Central High Atlas, Morocco). Geological Quarterly, 54: 367-380.
  • 7. Bordy, E. M., Hancox, P. J. & Rubidge, B. S., 2004. Fluvial style variations in the Late Triassic-Early Jurassic Elliot Formation, main Karoo Basin, South Africa. Journal of African Earth Sciences, 38: 383-400.
  • 8. Bordy, E. M. & Eriksson, P., 2015. Lithostratigraphy of the Elliot Formation (Karoo Supergroup), South Africa. South African Journal of Geology, 118: 311-316.
  • 9. Bordy, E. M., Abrahams, M. & Sciscio, L., 2017. The Subeng vertebrate tracks: stratigraphy, sedimentology and a digital archive of a historic Upper Triassic palaeosurface (lower Elliot Formation), Leribe, Lesotho (southern Africa). Bollettino della Societă Paleontologica Italiana, 56: 181-198.
  • 10. Bristowe, A. & Raath, M. A., 2004. A juvenile coelophysoid skull from the Early Jurassic of Zimbabwe, and the synonymy of Coelophysis and Syntarsus. Palaeontologia Africana, 40: 31-41.
  • 11. Catuneanu, O., Hancox, P. J. & Rubidge, B. S., 1998. Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research, 10: 417-439.
  • 12. Citton, P., Nicosia, U., Nicolosi, I., Carluccio, R. & Romano, M., 2015. Elongated theropod tracks from the Cretaceous Apenninic Carbonate Platform of southern Latium (central Italy). Palaeontologia Electronica, 18: 1-12.
  • 13. Citton, P., Romano, M., Carluccio, R., Caracciolo, F. D. A., Nicolosi, I., Nicosia, U., Sacchi, E., Speranza, G. & Speranza, F., 2017. The first dinosaur tracksite from Abruzzi (Monte Cagno, Central Apennines, Italy). Cretaceous Research, 73: 47-59.
  • 14. Council for Geoscience, 2008. Simplified Geological Map of the Republic of South Africa and Kingdoms of Lesotho and Swaziland (Scale 1:2 million). Compiled by: Johnson, M. R. & Wolmarans, L. G.. Pretoria, South Africa. https://www.geo-science.org.za/images/DownloadableMaterial/RSA_Geology.pdf
  • 15. Dalman, S. G. & Weems, R. E., 2013. A new look at morphological variation in the ichnogenus Anomoepus, with special reference to material from the Lower Jurassic Newark Supergroup: Implications for ichnotaxonomy and ichnodiversity. Bulletin of the Peabody Museum of Natural History, 54: 67-124.
  • 16. Ellenberger, F., Ellenberger, P. & Ginsburg, L., 1969. The appearance and evolution of dinosaurs in the Triassic and Lias: a comparison between South African Upper Karoo and western Europe based on vertebrate footprints. In: Amos, A. J. (ed.), Gondwana Stratigraphy: JUGS Symposium Buenos Aires (Mar del Plata). UNESCO, Buenos Aires (Mar del Plata), pp. 333-354.
  • 17. Ellenberger, P., 1970. The fossil-bearing strata associated with the earliest appearance of mammals in South Africa and their ichnology: establishment of detailed stratigraphic zones in the Stormberg of Lesotho (South Africa) (Upper Triassic to Jurassic). In: Haughton, S. H. (ed.), Proceedings and Papers of the Second Gondwanaland Symposium on Gondwana Stratigraphy and Palaeontology. Council for Scientific & Industrial Research, Pretoria, pp. 343-370.
  • 18. Falk, A. R., Hasiotis, S. T., Gong, E., Lim, J. - D. & Brewer, E. D., 2017. A new experimental setup for studying avian neoichnology and the effects of grain size and moisture content on tracks: trials using the domestic chicken (Gallus gallus). Palaios, 32: 689-707.
  • 19. Falkingham, P. L., Margetts, L. & Manning, P. L., 2010. Fossil vertebrate tracks as paleopenetrometers: confounding effects of foot morphology. Palaios, 25: 356-360.
  • 20. Gatesy, S. M., Middleton, K. M., Jenkins Jr, F. A. & Shubin, N. H., 1999. Three-dimensional preservation of foot movements in Triassic theropod dinosaurs. Nature, 399(6732): 141-144.
  • 21. Gatesy, S. M., 2003. Direct and indirect track features: What sediment did a dinosaur touch? Ichnos, 10: 91-98.
  • 22. Gates, T. A., 2005. The Late Jurassic Cleveland-Lloyd dinosaur quarry as a drought-induced assemblage. Palaios, 20: 363-375.
  • 23. Getty, P. R., 2005. Excavated and in situ dinosaur footprints from the Murray Quarry (Early Jurassic East Berlin Formation), Holyoke, Massachusetts, USA. Ichnos, 12: 163-178.
  • 24. Huerta, P., Fernández-Baldor, F. T., Farlow, J. O. & Montero, D., 2012. Exceptional preservation processes of 3D dinosaur footprint casts in Costalomo (Lower Cretaceous, Cameros Basin, Spain). Terra Nova, 24: 136-141.
  • 25. Jackson, S. J., Whyte, M. A. & Romano, M., 2009. Laboratory-controlled simulations of dinosaur footprints in sand: a key to understanding vertebrate track formation and preservation. Palaios, 24: 222-238.
  • 26. Johnson, M. R., Van Vuuren, C. J., Hegenberger, W. F., Key, R. & Show, U., 1996. Stratigraphy of the Karoo Supergroup in southern Africa: an overview. Journal of African Earth Sciences, 23: 3-15.
  • 27. Kitching, J. W. & Raath, M. A., 1984. Fossils from the Elliot and Clarens formations (Karoo Sequence) of the northeastern Cape, Orange Free State and Lesotho, and a suggested biozonation based on tetrapods. Palaeontologia Africana, 25: 111-125.
  • 28. Knoll, F., 2005. The tetrapod fauna of the Upper Elliot and Clarens formations in the main Karoo Basin (South Africa and Lesotho). Bulletin de la Société géologique de France, 176: 81-91.
  • 29. Kozur, H. W. & Mock, R., 1993. The importance of conchostracans for the correlation of continental and marine beds. The nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin, 3: 261-266.
  • 30. Kozur, H. W. & Weems, R. E., 2010. The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. Geological Society, London, Special Publications, 334: 315-417.
  • 31. Kuban, G. J., 1989. Elongate dinosaur tracks. In: Gillette, D. D. & Lockley, M. G. (eds), Dinosaur Tracks and Traces. Cambridge University Press, Cambridge, pp. 57-72.
  • 32. Kvale, E. P., Johnson, A. D., Mickelson, D. L., Keller, K., Furer, L. C & Archer, A. W., 2001. Middle Jurassic (Bajocian and Bathonian) dinosaur megatracksites, Bighorn Basin, Wyoming, USA. Palaios, 16: 233-254.
  • 33. Lockley, M. G., 1991. Tracking Dinosaurs. A New Look at an Ancient World. Cambridge University Press, Cambridge, 238 pp.
  • 34. Lockley, M. G., Matsukawa, M. & Jianjun, L., 2003. Crouching theropods in taxonomic jungles: ichnological and ichnotaxonomic investigations of footprints with metatarsal and ischial impressions. Ichnos, 10: 169-177.
  • 35. Lockley, M. G., Jianjun, L., Rihui, L., Matsukawa, M., Harris, J. D & Lida, X., 2013. A review of the tetrapod track record in China, with special reference to type ichnospecies: implications for ichnotaxonomy and paleobiology. Acta Geologica Sinica - English Edition, 87: 1-20.
  • 36. Mallison, H. & Wings O., 2014. Photogrammetry in paleontology - a practical guide. Journal of Paleontological Techniques, 12: 1-31.
  • 37. Martz, J. 2012. https://commons.wikimedia.org/wiki/File:Coelophysis_size.jpg [05.10.2018]
  • 38. Marty, D., Falkingham, P. L. & Richter, A., 2016. Dinosaur Track Terminology: A Glossary of Terms. In: Falkingham, P. L., Marty, D. & Richter, A. (eds), Dinosaur Tracks: The Next Steps. Indiana University Press, Bloomington, pp. 399-402.
  • 39. McPhee, B. W., Bordy, E. M., Sciscio, L. & Choiniere, J. N., 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic-Jurassic boundary. Acta Palaeontologica Polonica, 62: 441-465.
  • 40. Miall, A. D., 1996. The Geology of Fluvial Deposits. Blackwell Scientific Publications, Oxford, 582 pp.
  • 41. Milan, J. & Bromley, R.G., 2006. True tracks, undertracks and eroded tracks, experimental work with tetrapod tracks in laboratory and field. Palaeogeography, Palaeoclimatology, Palaeoecology, 231: 253-264.
  • 42. Milan, J., Loope, D. B. & Bromley, R. G., 2008. Crouching theropod and Navahopus sauropodomorph tracks from the Early Jurassic Navajo Sandstone of USA. Acta Palaeontologica Polonica, 53: 197-205.
  • 43. Nichols, G., 2009. Sedimentology and Stratigraphy. John Wiley & Sons, Oxford, 159 pp.
  • 44. Nicosia, U., Petti, F. M., Perugini, G., Porchetti, S. D. O., Sacchi, E., Conti, M. A., Mariotti, N. & Zarattini, A., 2007. Dinosaur tracks as paleogeographic constraints: new scenarios for the Cretaceous geography of the Periadriatic region. Ichnos, 14: 69-90.
  • 45. Olsen, P. E. & Galton, P. M., 1984. A review of the reptile and amphibian assemblages from the Stormberg of southern Africa, with special emphasis on the footprints and the age of the Stormberg. Palaeontologia Africana, 25: 87-110.
  • 46. Olsen, P. E., Smith, J. B. & McDonald, N. G., 1998. Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus, and Grallator (Early Jurassic, Hartford and Deerfield basins, Connecticut and Massachusetts, USA). Journal of Vertebrate Paleontology, 18: 586-601.
  • 47. Olsen, P. E. & Rainforth, E. C., 2003. The Early Jurassic ornith- ischian dinosaurian ichnogenus Anomoepus. The Great Rift Valleys of Pangea in Eastern North America, 2: 314-367.
  • 48. Ornitholestes, 2018. https://meta.wikimedia.org/wiki/File:Dracovenator_scale.svg [05.10.2018]
  • 49. Paik, I. S. & Kim, H. J., 2006. Playa lake and sheetflood deposits of the Upper Cretaceous Jindong Formation, Korea: occurrences and palaeoenvironments. Sedimentary Geology, 187: 83-103.
  • 50. Razzolini, N. L., Vila, B., Castanera, D., Falkingham, P. L., Barco, J. L., Canudo, J. I., Manning, P. L. & Galobart, Â., 2014. Intra-trackway morphological variations due to substrate consistency: the El Frontal dinosaur tracksite (Lower Cretaceous, Spain). PloS one, 9(4): p.e93708.
  • 51. Romano, M. & Citton, P., 2016. Crouching theropod at the seaside. Matching footprints with metatarsal impressions and theropod authopods: a morphometric approach. Geological Magazine, 154: 946-962.
  • 52. Romero-Molina, M., Sarjeant, W., Perez-Lorente, F., Lopez, A. & Requeta, E., 2003. Orientation and characteristics of theropod trackways from the Las Losas Palaeoichnological site (La Rioja, Spain). Ichnos, 10: 241-254.
  • 53. Sciscio, L. & Bordy, E. M., 2016. Palaeoclimatic conditions in the Late Triassic-Early Jurassic of southern Africa: a geochemical assessment of the Elliot Formation. Journal of African Earth Sciences, 119: 102-119.
  • 54. Sciscio, L., Bordy, E. M., Reid, M. & Abrahams, M., 2016. Sedimentology and ichnology of the Mafube dinosaur track site (Lower Jurassic, eastern Free State, South Africa): a report on footprint preservation and palaeoenvironment. PeerJ, 4: p.e2285.
  • 55. Smith, R. M., Marsicano, C. A. & Wilson, J. A., 2009. Sedimentology and paleoecology of a diverse Early Jurassic tetrapod tracksite in Lesotho, southern Africa. Palaios, 24: 672-684.
  • 56. Thulborn, R. A., 1990. Dinosaur Tracks. Chapman and Hall, London, 410 pp.
  • 57. Thulborn, R. A. & Wade, M., 1984. Dinosaur trackways in the Winton Formation (mid-Cretaceous) of Queensland. Memoirs of the Queensland Museum, 21: 413-517.
  • 58. Tänavsuu-Milkeviciene, K. & Sarg, J. F., 2012. Evolution of an organic-rich lake basin-stratigraphy, climate and tectonics: Piceance Creek basin, Eocene Green River Formation. Sedimentology, 59: 1735-1768.
  • 59. Whyte, M. A. & Romano, M., 2001. A dinosaur ichnocoenosis from the Middle Jurassic of Yorkshire, UK. Ichnos:, 8: 223-234.
  • 60. Yates, A. M., 2005. A new theropod dinosaur from the Early Jurassic of South Africa and its implications for the early evolution of theropods. Palaeontologia Africana, 41: 105-122.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b764933c-4cba-4dff-b646-35f27fc6751e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.