PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analytical study on the nonlinear forced vibration of functionally graded carbon nanotube-reinforced composite beams on nonlinear viscoelastic foundation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the nonlinear forced vibration of nanocomposite beams resting on a nonlinear viscoelastic foundation and subjected to a transverse periodic excitation. It is considered that the functionally graded carbon nanotubereinforced composite (FG-CNTRC) beam is made of an isotropic matrix reinforced by either aligned- or randomly oriented-straight single-walled carbon nanotubes (SWCNTs) with four types of distributions through the thickness direction of the beam. Both the Eshelby–Mori–Tanaka approach and extended rule of mixtures are used to predict the effective material properties of the FG-CNTRC beams. The mathematical model of the beam is developed based on the Euler–Bernoulli beam theory together with von Kármán assumptions. Subsequently, the accurate analytical solutions of the governing equation are obtained through applying the variational iteration method (VIM). Several examples are verified to have higher accuracy than those available in the literature. In addition, a comprehensive investigation into the effect of carbon nanotubes (CNTs) distribution, CNTs volume fraction, end supports, vibration amplitude, and foundation coefficients on the vibrational characteristics of the nanocomposite beam is performed and some new results are presented.
Rocznik
Strony
81--107
Opis fizyczny
Bibliogr. 47 poz., rys. kolor.
Twórcy
autor
  • Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz 71555, Iran
  • Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz 71555, Iran
Bibliografia
  • 1. M. Yamanouchi, M. Koizumi, T. Hirai, I. Shiota (Eds.), Proceedings of the First International Symposium on Functionally Gradient Materials, Functionally Gradient Materials Forum, Sendai, Japan, 1990.
  • 2. M. Koizumi, M. Niino, Overview of FGM research in Japan, MRS Bulletin, 20, 19–21, 1995.
  • 3. M.N.M. Allam, R. Tantawy, A.M. Zenkour, Thermoelastic stresses in functionally graded rotating annular disks with variable thickness, Journal of Theoretical and Applied Mechanics, 56, 1029–1041, 2018.
  • 4. A. Gupta, M. Talha, Recent development in modeling and analysis of functionally graded materials and structures, Progress in Aerospace Sciences, 79, 1–14, 2015.
  • 5. P.T. Thang, T.N. Thoi, J. Lee, Mechanical stability of metal foam cylindrical shells with various porosity distributions, Mechanics of Advanced Materials and Structures, 1–9, 2018. https://doi.org/10.1080/15376494.2018.1472338.
  • 6. H.S. Shen, Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, New York, 2016.
  • 7. J. Fariborz, R.C. Batra, Free vibration of bi-directional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius, Composite Structures, 210, 217–230, 2019.
  • 8. L.C. Trinh, T.P. Vo, H.T. Thai, T.K. Nguyen, An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads, Composites Part B: Engineering, 100, 152–163, 2016.
  • 9. N.I. Kim, T.A. Huynh, Q.X. Lieu, J. Lee, NURBS-based optimization of natural frequencies for bidirectional functionally graded beams, Archives of Mechanics, 70, 337–364, 2018.
  • 10. A.G. Shenas, S. Ziaee, P. Malekzadeh, Nonlinear vibration analysis of pre-twisted functionally graded microbeams in thermal environment, Thin-Walled Structures, 118, 87–104, 2017.
  • 11. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56–58, 1991.
  • 12. I.R. Pavlovic, R. Pavlovic, G. Janevski, Mathematical modeling and stochastic stability analysis of viscoelastic nanobeams using higher-order nonlocal strain gradient theory, Archives of Mechanics, 71, 137–153, 2019.
  • 13. R. Hosseini-Ara, Nano-scale effects on nonlocal boundary conditions for exact buckling analysis of nano-beams with different end conditions, Journal of Brazilian Society of Mechanical Sciences and Engineering, 40, 144, 2018.
  • 14. A.R. Setoodeh, H. Badjian, Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study, Materials Research Express, 2017, https://doi.org/10.1088/2053-1591/aa9ac2.
  • 15. V. Mittal, Polymer Nanotube Nanocomposites, Synthesis, Properties and Applications, John Wiley and Sons, New Jersey, 2010.
  • 16. Y. Han, J. Elliot, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Computational Materials Science, 39, 315–323, 2007.
  • 17. D.G. Ninh, Nonlinear thermal torsional post-buckling of carbon nanotube-reinforced composite cylindrical shell with piezoelectric actuator layers surrounded by elastic medium, Thin-Walled Structures, 123, 528–538, 2018.
  • 18. H. Shafiei, A.R. Setoodeh, Buckling and post-buckling analysis of FG-CNTRC beams: An exact closed form solution, Journal of Aerospace Science and Technology, 11, 33–41, 2017.
  • 19. P.T. Thang, T.N. Thoi, J. Lee, Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections, European Journal of Mechanics- A/Solids, 73, 483–491, 2019.
  • 20. A.R. Setoodeh, M. Shojaee, Critical buckling load optimization of functionally graded carbon nanotube-reinforced laminated composite quadrilateral plates, Polymer Composites, 2017. http://dx.doi.org/10.1002/pc.24289.
  • 21. H. Shafiei, A.R. Setoodeh, Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation, Steel and Composite Structures, 24, 65–77, 2017.
  • 22. R. Zhong, Q. Wang, J. Tang, C. Shuai, B. Qin, Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC)circular, annular and sector plates, Composite Structures, 194, 49–67, 2018.
  • 23. N.D. Duc, J. Lee, T.N. Thoi, P.T. Thang, Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations, Aerospace Science and Technology, 68, 391–402, 2017.
  • 24. P. Malekzadeh, A.R. Zarei, Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers, Thin-Walled Structures, 82, 221–232, 2014.
  • 25. Y.H. Yas, N. Samadi, Free vibration and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, International Journal of Pressure Vessels and Piping, 98, 119–128, 2012.
  • 26. H.L. Wu, J. Yang, S. Kitipornchai, Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections, Composites Part B: Engineering, 90, 86–96, 2016.
  • 27. A.G. Shenas, P. Malekzadeh, S. Ziaee, Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment, Composite Structures, 162, 325–340, 2017.
  • 28. T. Vo-Duy, V. Ho-Huu, T. Nguyen-Thoi, Free vibration analysis of laminated FGCNT reinforced composite beams using finite element method, Frontiers of Structural and Civil Engineering, 13, 324–336, 2019.
  • 29. M.H. Yas, M. Heshmati, Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load, Applied Mathematical Modelling, 36, 1371–1394, 2012.
  • 30. R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, F. Sadeghi, Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams, Composite Structures, 113, 316–327, 2014.
  • 31. Z. Wu, Y. Zhang, G. Yao, Z. Yang, Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams, International Journal of Mechanical Sciences, 153-154, 321–340, 2019.
  • 32. D. Younesian, A. Hosseinkhani, H. Askari, E. Esmailzadeh, Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications, Nonlinear Dynamics, 1–43, 2019.
  • 33. Y.H. Chen, Y.H. Huang, C.T. Shih, Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load, Journal of Sound and Vibration, 241, 809–824, 2001.
  • 34. U. Bhattiprolu, A.K. Bajaj, P. Davies, Effect of axial load on the response of beams on nonlinear viscoelastic unilateral foundations, ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers Digital Collection, 2014.
  • 35. D.L. Shi, X.Q. Feng, Y.Y. Huang, K.C. Hwang, H. Gao, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites, Journal of Engineering Materials and Technology, 126, 250–257, 2004.
  • 36. H.S. Shen, C.L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Materials & Design, 31, 3403–3411, 2010.
  • 37. C.H. Chen, C.H. Cheng, Effective elastic moduli of misoriented short-fiber composites, International Journal of Solids and Structures, 33, 2519–2539, 1996.
  • 38. G.M. Odegard, T.S. Gates, K.E. Wise, C. Park, E.J. Siochi, Constitutive modeling of nanotube-reinforced polymer composites, Composites Science and Technology, 63, 1671–1687, 2003.
  • 39. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 571–574, 1973.
  • 40. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241, 376–396, 1957.
  • 41. E. Garcia-Macias, L. Rodriguez-Tembleque, R. Castro-Triguero, A. Saez, Buckling analysis of functionally graded carbon nanotube-reinforced curved panels under axial compression and shear, Composites Part B: Engineering, 108, 243–256, 2017.
  • 42. S.S. Rao, Vibration of Continuous Systems, John Wiley and Sons, New Jersey, 2007.
  • 43. J.H. He, Variational iteration method- a kind of non-linear analytical technique: some examples, International Journal of Non-Linear Mechanics, 34, 699–708, 1999.
  • 44. L. Azrar, R. Benamar, R.G. White, Semi-analytical approach to the nonlinear dynamic response problem of S-S and C-C beams at large vibration amplitudes, part I: General theory and application to the single mode approach to free and forced vibration analysis, Journal of Sound and Vibration, 224, 183–207, 1999.
  • 45. L.L. Ke, J. Yang, S. Kitipornchai, An analytical study on the nonlinear vibration of functionally graded beams, Meccanica, 45, 743–752, 2010.
  • 46. C. Mei, K. Decha-Umphai, A finite element method for non-linear forced vibrations of beams, Journal of Sound and Vibration, 102, 369–380, 1985.
  • 47. S. Nourazar, A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method, Scientia Iranica, 20, 364–368, 2013.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b763c45f-4492-470c-867e-db2173ca1072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.