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This paper deals with the nonlinear forced vibration of nanocomposite
beams resting on a nonlinear viscoelastic foundation and subjected to a transverse
periodic excitation. It is considered that the functionally graded carbon nanotube-
reinforced composite (FG-CNTRC) beam is made of an isotropic matrix reinforced by
either aligned- or randomly oriented-straight single-walled carbon nanotubes (SWC-
NTs) with four types of distributions through the thickness direction of the beam.
Both the Eshelby–Mori–Tanaka approach and extended rule of mixtures are used
to predict the effective material properties of the FG-CNTRC beams. The mathe-
matical model of the beam is developed based on the Euler–Bernoulli beam theory
together with von Kármán assumptions. Subsequently, the accurate analytical so-
lutions of the governing equation are obtained through applying the variational it-
eration method (VIM). Several examples are verified to have higher accuracy than
those available in the literature. In addition, a comprehensive investigation into the
effect of carbon nanotubes (CNTs) distribution, CNTs volume fraction, end supports,
vibration amplitude, and foundation coefficients on the vibrational characteristics of
the nanocomposite beam is performed and some new results are presented.
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1. Introduction

The concept of functionally graded materials (FGMs) was first intro-
duced by a group of Japanese scientists in 1984 [1, 2]. FGMs are inhomogeneous
composite materials and characterized by a smooth and continuous variation of
material properties in one or more directions over volume. Due to remarkable
thermal and mechanical properties of FGMs, their applications have been rapidly
increased in different fields of science and industries and consequently, many in-
vestigators studied the mechanical properties of different structures made of
FGMs [3–6]. Among all of the structural elements, FGM beams are of significant
importance and have been widely studied by researchers [7–10].

By development of nanotechnology and emergence of carbon nanotubes [11],
many studies were conducted on the mechanical properties of the novel nanoscale
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materials, and particularly CNTs [12–14]. It was reported that, in addition to
the exceptional electrical and mechanical properties of CNTs, they are suit-
able materials to be used as reinforcement phase in composite materials includ-
ing FGMs [15]. Thus, examining the mechanical behavior of carbon nanotube-
reinforced composite structures has been provided extensive opportunities for
scientists in various research areas [16–24]. Meanwhile, free vibration and buck-
ling of CNTRC beams resting on an elastic foundation were studied in the con-
text of Timoshenko beam theory by Yas and Samadi [25]. They employed
the generalized differential quadrature method to solve the related equation.
Wu et al. [26] studied the nonlinear free vibration of a geometrically imperfect
FG-CNTRC beam utilizing the first-order shear deformable theory. The imper-
fections were described using a model consisting of trigonometric and hyper-
bolic functions. Free vibration analysis of FG-CNTRC beams in thermal envi-
ronment was examined by Shenas et al. [27]. They assumed that the beam
is pre-twisted and showed that fundamental frequency parameters enhance by
increasing the pre-twist angle. Based on the first-order shear deformation the-
ory, Vo-Duy et al. [28] investigated the free vibration of laminated FG-CNTRC
beams. They considered different distribution of SWCNTs in each layer of the
nanocomposite beam.

Among all of the investigations cited thus far, less attention has been at-
tracted to the forced vibration analysis of FG-CNTRC structures. For the case
of beams, Yas and Heshmati [29] employed both the Euler–Bernoulli and Tim-
oshenko beam theories to discuss the linear forced vibration of FG nanocompos-
ite beams reinforced by randomly oriented CNTs subjected to a moving load.
The material properties of the CNTRC beam were evaluated using the Eshelby–
Mori–Tanaka approach. Through utilizing the Timoshenko beam theory and von
Kármán geometric nonlinearities together with a differential quadrature method,
the nonlinear forced vibration of FG-CNTRC Timoshenko beams was studied
by Ansari et al. [30]. Wu et al. [31] examined the nonlinear primary and super-
harmonic resonances of FG-CNTRC beams. They derived coupled equations of
motion by means of the Hamilton principle and Galerkin technique and employed
the incremental harmonic balance method to solve the equations.

Foundations are important parts of physical systems due to their wide range
of applications in different science and engineering areas [32]. Viscoelastic foun-
dations are among the most practical and realistic models and several researchers
have employed them to examine mechanical behavior of real structures. For in-
stance, Chen et al. [33] studied the dynamic response of an infinite or semi-finite
beam on viscoelastic foundation subjected to harmonic moving load for the rail-
way engineering applications. A nonlinear viscoelastic foundation was applied by
Bhattiprolu et al. [34] to model restoring force of flexible polyurethane foams,
which are used in furniture and automotive industry.
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By a comprehensive review of the literature, it was found that most of
the researchers have considered aligned and straight CNTs as reinforcements of
nanocomposite beams and have determined material properties of these struc-
tures using the extended rule of mixture. In this study, in addition to the aligned
CNTs, it is assumed that CNTs are randomly oriented in the polymeric matrix.
Thus, the Eshelby–Mori–Tanaka approach, which is applicable in both cases of
aligned- and randomly oriented-straight CNTs, is also employed to calculate the
effective material properties of the FG-CNTRC beams. The CNTs are graded
gradually in the thickness direction of the beam with different distributions. The
beam is subjected to a transverse periodic excitation and is resting on a non-
linear viscoelastic foundation. Based on the Euler–Bernoulli beam theory and
Hamilton’s principle, the governing equation of the nanobeam is developed. The
variational iteration method is applied to solve the nonlinear governing equation
and the closed form solutions are provided for the vibrational behavior of the
nanocomposite beam. To the best of authors’ knowledge, no analytical results
have been reported in the literature for nonlinear forced vibration analysis of
FG-CNTRC beams reinforced by randomly oriented CNTs. The developed re-
sults in this paper reveal the influences of different parameters on the nonlinear
frequencies and vibration response of the nanobeams.

2. Effective material properties of FG-CNTRC beam

In this work, straight SWCNTs parallel to the longitudinal direction of the
beam and straight SWCNTs randomly oriented in different directions are se-
lected as the reinforcements of the CNTRC beams. Two different approaches as
the Eshelby–Mori–Tanaka (EMT) and the extended rule of mixture (ERM) are
employed to estimate the material properties of the CNTRC beams. The EMT
can be utilized for nanocomposites reinforced with either aligned or randomly
oriented CNTs [35]. However, the ERM is applicable only when the straight
CNTs are aligned in the matrix [36].

2.1. Extended rule of mixture

The effective Young’s and Shear moduli of the CNTRC with aligned CNTs
along the longitudinal direction are predicted using the ERM as follows [36]:

E11 = η1V
cntEcnt

11 + VmEm,(2.1a)

η2

E22
=
V cnt

Ecnt
22

+
Vm

Em
,(2.1b)

η3

G12
=
V cnt

Gcnt
12

+
Vm

Gm
,(2.1c)
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where Ecnt
11 , Ecnt

22 and Gcnt
12 are the Young’s and shear moduli of CNTs, respec-

tively. Em and Gm denote the corresponding material properties of the isotropic
matrix. ηi (i = 1, 2, 3) are the CNTs efficiency parameters stating the size-
dependent material properties and are calculated through equalizing the elastic
moduli results assessed from the molecular dynamics (MD) simulations [16] to
the counterparts evaluated from the ERM. Vm and V cnt are the volume frac-
tions of the matrix and CNTs, respectively, and are related by V cnt + Vm = 1.
Similarly, the effective Poisson ratio ν12 and the mass density ρ of the CNTRC
beam can be determined as:

(2.2) ν12 = V cntνcnt
12 + Vmνm, ρ = V cntρcnt + Vmρm.

The considered distribution patterns of CNTs in the matrix, depicted in
Fig. 1, are in the form of:

UD: V cnt = V cnt
∗

,(2.3)

FGA: V cnt =

(

1 +
2z

h

)

V cnt
∗

,(2.4)

FGX: V cnt = 4
|z|
h
V cnt
∗

,(2.5)

FGO: V cnt =

(

2 − 4
|z|
h

)

V cnt
∗

,(2.6)

a) Ud b) FG-A

c) FG-O db) FG-X

Fig. 1. Distribution patterns of SWCNTs in the FG-CNTRC beams.
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where

(2.7) V cnt
∗

=
Λcnt

Λcnt +
(ρcnt

ρm

)

(1 − Λcnt)

in which Λcnt is the mass fraction of CNTs.

2.2. Eshelby–Mori–Tanaka approach

The Eshelby–Mori–Tanaka is an efficient method for evaluating the effec-
tive material properties of composites and nanocomposites while its accuracy
has motivated researchers to employ it in their investigations. Moreover, there
are studies that have demonstrated the correctness of this method [37,38]. The
main idea of the EMT approach, also called the equivalent inclusion-average
stress method, is extracted from the concept of average stress in the matrix pre-
sented by Mori and Tanaka [39] and the equivalent elastic inclusion idea of
Eshelby [40].

To estimate the material properties of CNTRC beams, each CNT in the poly-
meric matrix is modeled by an equivalent long fiber with transversely isotropic
elastic properties. Thus, the resulted composite is also transversely isotropic.
Employing an equivalent fiber approach together with the numerical results ob-
tained from MD simulations [16], the material properties of the equivalent fiber
are determined.

2.2.1. Composites reinforced with aligned-straight CNTs. A composite beam re-
inforced with straight CNTs aligned in the x direction is considered. The material
properties of the CNTRC beam can be expressed in terms of engineering con-
stants as [41]

(2.8)
E11 = n− l2

k
, E22 =

4m(kn− l2)

kn− l2 +mn
, ν12 = ν13 =

l

2k
,

ν23 =
n(k −m) − l2

n(k +m) − l2
, G12 = G13 = p,

where n, l, k, m, and p are Hill’s elastic moduli of the composite; n is the uniaxial
tensile modulus in the CNT direction,l is the associated transverse modulus, k
is the plain-strain bulk modulus normal to the CNT direction, m and p are the
shear moduli in the planes normal and parallel to the CNT direction, respectively.
Based on the EMT approach, the Hill’s elastic moduli of the composite beam
can be described as [35]

k =
Em{EmVm+2kr(1+νm)[1+V cnt(1−2νm)]}

2(1+νm)[Em(1+V cnt−2νm)+2Vmkr(1−νm−2ν2
m)]

,(2.9)
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l =
Em{Vmνm[Em+2kr(1+νm)]+2V cntlr(1−ν2

m)}
(1+νm)[2Vmkr(1−νm−2ν2

m)+Em(1+V cnt−2νm)]
,(2.10)

n =
E2

mVm(1+V cnt−Vmνm)+2VmV
cnt(krnr−l2r)(1+νm)2(1−2νm)

(1+νm){2Vmkr(1−νm−2ν2
m)+Em(1+V cnt−2νm)}(2.11)

+
Em[2V 2

mkr(1−νm)+V cntnr(1−2νm+V cnt)−4Vmlrνm]

2Vmkr(1−νm−2ν2
m)+Em(1+V cnt−2νm)

,

p =
Em[EmVm+2pr(1+V cnt)(1+νm)]

2(1+νm)[Em(1+V cnt)+2Vmpr(1+νm)]
,(2.12)

m =
Em[EmVm+2mr(1+νm)(3+V cnt−4νm)]

2(1+νm){Em[Vm+4V cnt(1−νm)]+2Vmmr(3−νm−4ν2
m)} ,(2.13)

in which kr, lr, nr, mr, and pr are the equivalent Hill’s elastic moduli of the
reinforcing phase and can be determined from equality of the following matrices

Cr =



















nr lr lr 0 0 0

lr kr +mr kr −mr 0 0 0

lr kr −mr kr +mr 0 0 0

0 0 0 mr 0 0

0 0 0 0 pr 0

0 0 0 0 0 pr



















,(2.14)

Cr =





















1
EL

−νTL
ET

−νZL
EZ

0 0 0

−νLT
EL

1
ET

−νZT
EZ

0 0 0

−νLZ
EL

−νTZ
ET

1
EZ

0 0 0

0 0 0 1
GTZ

0 0

0 0 0 0 1
GLZ

0

0 0 0 0 0 1
GLT





















−1

(2.15)

where the engineering constants in Eq. (2.15) denote the corresponding material
properties of the equivalent fiber. The subscripts L and (T , Z) refer to the
directions parallel and normal to the fibers direction, respectively. Also, Cr is
the tensor of elastic moduli of the reinforcing phase.

2.2.2. Composites reinforced with randomly oriented-straight CNTs. The orienta-
tion of the reinforcements in fiber reinforced composites significantly influences
the effective material properties of such materials. In the case that CNTs are
completely randomly oriented in the matrix, then the resulting composite is
isotropic. Therefore, Young’s modulus E and Poisson’s ratio ν are evaluated
as [35]
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(2.16) E =
9KG

3K +G
, ν =

3K − 2G

6K + 2G
,

where K and G are bulk modulus and shear modulus of the composite, respec-
tively and can be stated as

(2.17)
K = Km +

V cnt(δr − 3Kmαr)

3(Vm + V cntαr)
,

G = Gm +
V cnt(ηr − 2Gmβr)

2(Vm + V cntβr)
,

where

αr =
3(Km +Gm) + kr − lr

3(Gm + kr)
,(2.18)

βr =
1

5

{

4Gm + 2kr + lr
3(Gm + kr)

+
4Gm

Gm + pr
(2.19)

+
2 [Gm(3Km +Gm) +Gm(3Km + 7Gm)]

Gm(3Km +Gm) +mr(3Km + 7Gm)

}

,

δr =
1

3

[

nr + 2lr +
(2kr + lr)(3Km + 2Gm − lr)

Gm + kr

]

,(2.20)

ηr =
1

5

[

2

3
(nr − lr) +

8Gmpr

Gm + pr
+

8mrGm(3Km + 4Gm)

3Km(mr +Gm) +Gm(7mr +Gm)
(2.21)

+
2(kr − lr)(2Gm + lr)

3(Gm + kr)

]

.

Also, Km and Gm are the bulk and shear moduli of the isotropic matrix defined
as

(2.22) Km =
Em

3(1 − 2νm)
, Gm =

Em

2(1 + νm)
.

3. Theory and formulation

As shown in Fig. 2, a beam with the length of L, the width of b and the
height of h is considered. The origin of the reference Cartesian coordinate sys-
tem (x, y, z) is located in the center of the left plane of the beam while the
x, y, and z axes are along the length, width and height directions of the beam,
respectively. It is assumed that the FG-CNTRC beam is resting on a nonlinear
viscoelastic foundation and subjected to a uniform harmonic transverse load to
provide a more general problem. The displacement of an arbitrary point of the
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Fig. 2. Schematic view of FG-CNTRC beam with nonlinear viscoelastic foundation
subjected to uniform transverse loading.

beam in the x and z directions can be expressed according to the Euler–Bernoulli
beam theory as [21]

(3.1)
⌢

U(x, z, t) = U(x, t) − z
∂W (x, t)

∂x
,

⌢

W (x, z, t) = W (x, t),

in which U and W denote the axial and transverse displacement components
in the mid-plane of the beam, respectively and t is the time. According to von
Kármán assumptions, the normal stress can be determined as

(3.2) σxx = Q11(z)

[

∂U

∂x
− z

∂2W

∂x2
+

1

2

(

∂W

∂x

)2]

,

where

(3.3) Q11 =
E11(z)

1 − ν2
12(z)

.

Based on Hamilton’s principle, one can write

(3.4)

t1
∫

0

δ(Ue −K −Wex)dt = 0,

where δ is the variational symbol. Ue and K are respectively the strain energy
and kinetic energy evaluated as

Ue =
b

2

L
∫

0

h/2
∫

−h/2

Q11(z)

(

∂U

∂x
− z

∂2W

∂x2
+

1

2

(

∂W

∂x

)2)
2

dzdx,(3.5)

K =
b

2

L
∫

0

h/2
∫

−h/2

ρ(z)

[(

∂U

∂t

)2

+

(

∂W

∂t

)2]

dzdx.(3.6)
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Furthermore, Wex refers to the work done by the external forces and it can
be stated as follows

(3.7) δWext =

∫

A

Pex(x, t)δWdA,

where Pex is the summation of external forces per unit area of the beam which
consists of the periodic transverse load and nonlinear foundation effect in the
form of

(3.8) Pex(x, t) = F (x, t) − klW − knlW
3 + ks

∂2W

∂x2
− c

∂W

∂t
,

in which kl, ks, and knl are the linear, shear and nonlinear coefficients of the
foundation and c is the viscous damping parameter. Also, F (x,t) is the transverse
harmonic force. By substituting the resulting equations of Ue, K and Wex in the
relation of Hamilton’s principle, the equations of motion for the FG-CNTRC
beams are derived as

∂Nx

∂x
= I1

∂2U

∂t2
,(3.9)

∂2Mx

∂x2
+

∂

∂x

(

Nx
∂W

∂x

)

− klW − knlW
3 + ks

∂2W

∂x2
+ F (x, t)(3.10)

= I1
∂2W

∂t2
+ c

∂W

∂t
.

Moreover, the related boundary conditions at the end points of the beam are
derived as

Nx = 0 or δU = 0,(3.11)

∂Mx

∂x
+ (ks +Nx)

∂W

∂x
= 0 or δW = 0,(3.12)

Mx = 0 or δ

(

∂W

∂x

)

= 0.(3.13)

In the above equations, Mx and Nx are the bending moment and normal
force resultants respectively defined as

Nx = A11

[

∂U

∂x
+

1

2

(

∂W

∂x

)2]

−B11
∂2W

∂x2
,(3.14)

Mx = B11

[

∂U

∂x
+

1

2

(

∂W

∂x

)2]

−D11
∂2W

∂x2
,(3.15)
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in which

(3.16) {A11, B11, D11} =

h/2
∫

−h/2

Q11(z)
{

1, z, z2
}

dz, I1 =

h/2
∫

−h/2

ρ(z)dz.

The axial inertia is assumed to be negligible, so Eq. (3.9) gives

(3.17)
∂Nx

∂x
= 0 or Nx = constant = N0.

Since the considered end supports of the beam are immovable (i.e. U =0 at
x =0 and x = L), integration from (3.14) yields

(3.18) N0 =
A11

L

L
∫

0

[

1

2

(

∂W

∂x

)2

− B11

A11

∂2W

∂x2

]

dx.

Moreover, the bending moment can be restated in terms of axial force resul-
tant and transverse deflection as

(3.19) Mx =
B11

A11

[

N0 +B11
∂2W

∂x2

]

−D11
∂2W

∂x2
.

By substituting Eq. (3.19) into Eq. (3.10) and considering Eq. (3.17), the
equations of motion of the beam reduce to one equation as

(3.20)

(

B2
11

A11
−D11

)

∂4W

∂x4
+ (N0 + ks)

∂2W

∂x2
− klW − knlW

3 + F (x, t)

= I1
∂2W

∂t2
+ c

∂W

∂t
.

For simplification and generality, the following dimensionless quantities are
defined

(3.21)

ζ =
x

L
, w̄ =

W

h
, η =

h

L
, τ =

t

L

√

A110

I10
,

(a11, b11, d11) =

(

A11

A110
,
B11

A110h
,
D11

A110h2

)

, Ī =
I1
I10

where A110 and I10 are the values of A11 and I1 of a homogenous beam made of
the matrix material.

Using dimensionless parameters in Eq. (3.21), the dimensionless governing
equation of the CNTRC beam can be obtained as

(3.22) d0η
2∂

4w̄

∂ζ4
+ (N̄0 +Ks)

∂2w̄

∂ζ2
−Klw̄ −Knlw̄

3 + F̄ (ζ, τ) = Ī
∂2w̄

∂τ2
+ c̄

∂w̄

∂τ
,
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where F̄ is the dimensionless transverse force. Also, Kl, Ks, Knl, and c̄ are the
dimensionless parameters of the viscoelastic foundation. Other dimensionless
parameters in addition to those explained in Eq. (3.21), are determined as

(3.23)

Kl =
L2kl

A110
, Ks =

ks

A110
,

Knl =
L2h2knl

A110
, F̄ =

FL2

hA110
,

c̄ =
cL√
A110I10

, d0 =
b211
a11

− d11,

N̄0 = a11η
2

1
∫

0

[

1

2

(

∂w̄

∂ζ

)2

− b11
a11

∂2w̄

∂ζ2

]

dζ.

According to the separation of variables analysis, the transverse displacement
equation of the beam can be expressed as the multiplication of the mode shape
function of the beam and an unknown time-dependent function.

(3.24) w̄(ζ, τ) = φ(ζ)w(τ).

Table 1. Vibration mode shapes of beams for different boundary conditions.

Boundary
conditions

Mode shape φ(ζ) Coefficient β

S-S Cn sin(βnζ)

β1 = π

β2 = 2π

β3 = 3π

C-C Dn

ˆ

cosh(βnζ)−cos(βnζ)− cosh(βn)−cos(βn)
sinh(βn)−sin(βn)

(sinh(βnζ)−sin(βnζ))
˜

β1 = 4.7300

β2 = 7.8532

β3 = 10.9956

C-S Zn

ˆ

cosh(βnζ)−cos(βnζ)− cosh(βn)−cos(βn)
sinh(βn)−sin(βn)

(sinh(βnζ)−sin(βnζ))
˜

β1 = 3.9266

β2 = 7.0686

β3 = 10.2102

where φ is the mode shape function given in Table 1 for different boundary
conditions [42] and w is the time-dependent function which will be determined.
In Table 1, the coefficients Cn, Dn, and Zn are determined according to the
maximum deflection of the beam. By Substituting Eq. (3.24) into Eq. (3.22) and
applying Galerkin’s technique, the governing equation takes the following form

(3.25) ẅ + γ5ẇ + (γ1 + α1 + α2)w + γ2w
2 + (γ3 + α3)w

3 = γ4F̄ ,
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where

(3.26)

γ1 =
−d0η

2
∫ 1
0

d4φ
dζ4 φdζ

λ0
, γ2 =

b11η
2
∫ 1
0

d2φ
dζ2 dζ

∫ 1
0

d2φ
dζ2 φdζ

λ0
,

γ3 =
−a11η

2
∫ 1
0

(dφ
dζ

)2
dζ

∫ 1
0

d2φ
dζ2 φdζ

2λ0
γ4 =

∫ 1
0 φdζ

λ0
, γ5 =

c̄
∫ 1
0 φ

2dζ

λ0
,

λ0 = Ī

1
∫

0

φ2dζ, α1 =
Kl

∫ 1
0 φ

2dζ

λ0
,

α2 =
−Ks

∫ 1
0

d2φ
dζ2 φdζ

λ0
, α3 =

Knl

∫ 1
0 φ

4dζ

λ0
.

In this study, it is assumed that the beam is under the action of a distributed
transverse harmonic load with the relation of

(3.27) F̄ = f cos(Ωτ)

in which f and Ω are dimensionless forms of the amplitude and frequency of
the external excitation, respectively. Three types of end supports are considered
for the beam, i.e., simply supported at both ends (S-S), clamped at both ends
(C-C) and clamped at x = 0 and simply supported at x = L (C-S), which must
satisfy the following boundary conditions

• Simply supported-simply supported

(3.28) φ(0) = φ(1) = 0,
d2φ(0)

dζ2
=
d2φ(1)

dζ2
= 0.

• Clamped-clamped

(3.29) φ(0) = φ(1) = 0,
dφ(0)

dζ
=
dφ(1)

dζ
= 0.

• Clamped-simply supported

(3.30) φ(0) = φ(1) = 0,
dφ(0)

dζ
=
d2φ(1)

dζ2
= 0.

Also, the initial velocity and displacement for the forced vibration analysis
of the FG-CNTRC beam are considered to be equal to zero.
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4. Solution approach

In this study, the variational iteration method (VIM) is employed to solve
the governing equation of forced vibration of the FG-CNTRC beams. The VIM
presented by He [43] is a powerful and accurate analytical method wherein the
approximations converge fast to the exact solution even in the case of highly
nonlinear differential equations. Moreover, this technique provides closed form
solutions which are helpful for parametric studies.

To demonstrate the principles of VIM, consider the following general nonlin-
ear system [43]

(4.1) Lu(t) + Γu(t) = g(t).

In Eq. (4.1), L, Γ, and g represent the linear operator, nonlinear operator,
and a real inhomogeneous term, respectively. The (n+1)th-order approximate so-
lution of the differential equation can be determined by developing the following
correction functional

(4.2) un+1(t) = un(t) +

t
∫

0

λ(Lun(s) + Γ ũn(s) − g(s))ds

in which λ is a general Lagrange multiplier and can be found optimally using
variational theory. Also, ũn indicates a restricted variation, i.e. δũn = 0.

4.1. Application of VIM in the forced vibration analysis

By introducing the following parameters, Eq. (3.25) can be simplified as

(4.3)
ẅ(τ) + θ5ẇ(τ) + θ1w(τ) + θ2w

2(τ) + θ3w
3(τ) = θ4 cos(Ωτ),

θ1 = γ1 + α1 + α2, θ2 = γ2, θ3 = γ3 + α3, θ4 = fγ4, θ5 = γ5.

The total solution of the above equation consists of the solutions of the steady
state and the transient phases, which, respectively, are also called the particular
solution, wp, and the homogenous solution, wh, i.e. w(τ) = wp(τ) + wh(τ). In
the following, it is explained how both of the solutions are determined.

4.1.1. Steady state solution. To find the general Lagrange multiplier, Eq. (4.3)
can be rewritten in the form of

(4.4)
ẅ + ω2w +Q(w, ẇ,Ωτ) = 0,

Q(w, ẇ,Ωτ) = θ1w + θ2w
2 + θ3w

3 + θ5ẇ − θ4 cos(Ωτ) − ω2w,
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where Q is a function of w, ẇ and Ωτ , and ω is the dimensionless natural
frequency defined as

(4.5) ω = ω̄L

√

I10
A110

in which ω̄ is the dimensional natural frequency. Substitution of Eq. (4.4) into
Eq. (4.2) yields

(4.6) wn+1(τ) = wn(τ) +

τ
∫

0

λ(s)[ẅn(s) + ω2wn(s) +Q(w̃, ˙̃w,Ωs)]ds.

By computing the variation of Eq. (4.6) with respect to w and utilizing
integration by parts, the following stationary conditions are obtained

(4.7)
d2λ(s)

ds2
+ ω2λ(s) = 0, 1 − dλ(s)

ds

∣

∣

∣

∣

s=τ

= 0, λ(s = τ) = 0.

Thus, the general Lagrange multiplier can be determined by solving the pre-
vious set of equations as

(4.8) λ(s) =
1

ω
sin(ω(s− τ)).

According to the steady state solution of the linear forced vibration, the first
approximation function is considered as

(4.9) wp0(τ) = A cos(ωτ + ψ)

where A and ψ are the dimensionless vibration amplitude (wmax) and phase
angle, respectively. It is worth noting that in the steady state phase of the forced
vibration analysis, the vibration frequency is identical to the frequency of the
external loading. Therefore, ω should be replaced with Ω. By substitution of
Eqs. (4.3), (4.8) and (4.9) into Eq. (4.2), the first-order approximation can be
written as

(4.10) wp1 = A cos(Ωτ + ψ) +

τ
∫

0

1

Ω
sin(Ω(s− τ))

×
[

1

4
A3θ3 cos(3Ωs+ 3ψ) +

1

2
A2θ2 cos(2Ωs+ 2ψ) +

1

2
θ2A

2

]

ds.

Then, the first-order approximation of steady state phase of the time response
is obtained by solving the above correction functional as follows,

(4.11) wp1 = A cos(Ωτ + ψ) +
A2

96Ω2
(8θ2H1 + 3Aθ3H2)
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in which

(4.12)
H1 = 2 cos(2Ωτ+2ψ)−3 cos(Ωτ+2ψ)+cos(−Ωτ+2ψ)+6 cos(Ωτ)−6,

H2 = cos(3Ωτ+3ψ)−2 cos(Ωτ+3ψ)+cos(−Ωτ+3ψ).

It should be remarked that in Eq. (4.10), the coefficients of cos(Ωs) and
sin(Ωs) were equated to zero to avoid secular terms in the next iterations. Thus,
a nonlinear system of equations is developed from which vibration amplitude,
vibration frequency, and phase angle can be found

(4.13)
cos(Ωs): AΩ2 cos(ψ)+Aθ5Ω sin(ψ)−3

4
A3θ3 cos(ψ)−Aθ1 cos(ψ)+θ4 = 0,

sin(Ωs): AΩ2 sin(ψ)−Aθ5Ω cos(ψ)−3

4
A3θ3 sin(ψ)−Aθ1 sin(ψ) = 0.

Moreover, the results of the next iterations can be calculated similarly. Also,
by setting θ4 = θ5 = ψ = 0 and repeating the same procedure, the nonlinear
natural frequencies and time response of the undamped free vibration analysis
of the beam is obtained.

4.1.2. Transient solution. In this section, it is assumed that the beam is not under
the action of the external harmonic loading. Therefore, Eq. (4.3) is rewritten as

(4.14)
ẅ(τ) + θ5ẇ(τ) + θ1w(τ) +O(w) = 0,

O(w) = θ2w
2 + θ3w

3.

Similar to the steady state solution, the corresponding stationary conditions
for the general Lagrange multiplier are found via substituting Eq. (4.14) into
(4.2) and evaluating the variation of the developed equation with respect to w
and employing integration by parts as

(4.15)

d2λ(s)

ds2
− θ5

dλ(s)

ds
+ θ1λ(s) = 0,

1 −
(

dλ(s)

ds
− θ5λ(s)

)
∣

∣

∣

∣

s=τ

= 0, λ(s = τ) = 0.

Therefore, in this case, the Lagrange multiplier can be identified as

(4.16) λ(s) =
1

µ
sin(µ(s− τ))e

θ5
2

(s−τ)

where

(4.17) µ =

√

θ1 −
(

θ5
2

)2

.
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Based on the transient response of the linear forced vibration of the beam,
the initial function is assumed to be in the form of

(4.18) wh0(τ) = e−
θ5
2

τ (X cos(µτ) + Y sin(µτ))

where X and Y are unknown constants which are determined according to the
initial conditions. Substituting Eqs. (4.3), (4.16) and (4.18) into Eq. (4.2) and
setting θ4 =0 leads to the first-order approximation of the transient phase solu-
tion as

wh1 =
1

c1

{

e−
θ5
2

τ [(c2 + c1Y ) sin(µτ) + (c3 + c1X) cos(µτ)](4.19)

+ e−θ5τ [c4 sin(2µτ) + c5 cos(2µτ) + c6]

+ e−
3θ5
2

τ [c7 sin(3µτ) + c8 cos(3µτ) + c9]
}

in which ci (i = 1, . . . , 9) are evaluated through the relations presented in the
Appendix. By repeating the same procedure, the higher-order approximations
can be obtained. Thus, the nth-order solution of the full time history of the
response of the FG-CNTRC beams on a nonlinear viscoelastic foundation is
determined as

(4.20) wn = wpn + whn.

5. Results and discussions

In this section, the numerical results for forced vibration frequencies and
time response of the FG-CNTRC beams are presented. First of all, for authen-
tication of the current approach, the corresponding solutions from the available
references are provided for a comparative study. The nonlinear free vibration

Table 2. Nonlinear free vibration frequency ratios (ωnl/ωl) for S-S and C-C
isotropic beams.

Wmax/
p

I/S 1st App. 2nd App. 3rd App. Ref. [44] Ref. [45]

S-S

0.5 1.0232 1.0231 1.0231 – 1.0231

1 1.0897 1.0892 1.0892 1.0892 1.0892

2 1.3229 1.3180 1.3178 1.3178 1.3178

3 1.6394 1.6263 1.6257 1.6257 1.6257

C-C

0.5 1.0056 1.0056 1.0056 – 1.0056

1 1.0222 1.0222 1.0222 1.0222 1.0222

2 1.0862 1.0857 1.0857 1.0857 1.0857

3 1.1852 1.1832 1.1831 1.1831 1.1831
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frequency ratios (ωnl/ωl) of isotropic homogeneous beams with S-S and C-C
boundary conditions based on the first three iterations of the VIM are given in
Table 2. It can be seen that the results agree very well with those calculated
using the harmonic balance method (HBM) [44] and the direct numerical inte-
gration solution [45]. Furthermore, the fast rate of convergence of the method is
noticeable. Here, Wmax, I and S refer to the dimensional maximum transverse
deflection, area moment of inertia and cross-sectional area of the beam, respec-
tively. In Table 3, the calculated values of the frequency ratios (Ω/ωl) for un-
damped nonlinear forced vibration of S-S isotropic beams subjected to a uniform
harmonic distributed excitation are compared with the counterparts reported by
other references [44,46] and as observed, a good agreement is achieved again.

Table 3. Frequency ratios (Ω/ωl) for undamped nonlinear forced vibration of S-S
isotropic beams with

√
12γ4 = 2.

Wmax/
p

I/S 1st App. 2nd App. HBM [44]
Elliptic

solution [46]

2 0.8660 0.8181 0.8660 0.8472

3 1.4216 1.3925 1.4216 1.4003

4 1.8708 1.8379 1.8708 1.8413

5 2.2995 2.2596 2.2995 2.2606

Figure 3 plots the damped free vibration time response of a beam with
θ1 = 20, θ2 = 0, θ3 = 2, θ5 = 1, w(0) = −0.2 and ẇ(0) = 2. It is found
that the present curve exhibits excellent agreement with the one presented by
Nourazar and Mirzabeygi [47] wherein the modified differential transform

Fig. 3. Comparison of the damped free vibration time response of beams using VIM and
MDTM [47].
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method (MDTM) is used to solve the homogeneous damped Duffing equation.
The accuracy of the presented EMT approach is illustrated in Fig. 4. The non-
linear free vibration frequencies of a C-S FGA-CNTRC beam reinforced with
aligned-straight CNTs assessed by EMT method are compared to those calcu-
lated using ERM [21]. In Fig. 4, Poly methyl methacrylate (PMMA) and (10, 10)
SWCNTs are considered as the matrix and reinforcements, respectively. It can
be deduced from Fig. 4 that there is a good agreement between the results which
confirms the correctness of the applied EMT technique.

Fig. 4. Dimensionless frequencies of nonlinear free vibration for C-S FGA-CNTRC beams
reinforced with aligned-straight CNTs (L/h = 15).

At the next stage, the effects of different parameters on the vibration fre-
quencies and time response of the FG-CNTRC beams are investigated. In this
study, PMMA with the material properties of Em = 2.5 GPa, νm = 0.3 and
ρm = 1190 kg/m3 at room temperature is considered as the matrix material.
The selected reinforcements are armchair (10,10) SWCNTs. The corresponding
material properties are assumed to be Ecnt

11 = 5.6466 TPa, Ecnt
22 = 7.0800 TPa,

Gcnt
12 = 1.9445 TPa, νcnt

12 = 0.175 and ρcnt = 1400 kg/m3 with the effective wall
thickness of 0.067 nm [36]. For ERM method, the CNT efficiency parameters
are evaluated via matching the values of elastic modulus obtained from MD
simulations [16] with the ones predicted through ERM as [36]:

V cnt
∗

= 0.12 : η1 = 0.137, η2 = 1.022, η3 = 0.715,

V cnt
∗

= 0.17 : η1 = 0.142, η2 = 1.626, η3 = 1.138,

V cnt
∗

= 0.28 : η1 = 0.141, η2 = 1.585, η3 = 1.109.

All of the forced vibration results are calculated for FGA-CNTRC beams with
randomly oriented-straight CNTs as reinforcements and the slenderness ratio of
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L/h =30, unless otherwise stated. It should be also mentioned that since the
steady state phase is significantly more important than the transient phase in
the forced vibration analysis, the vibration amplitude of the steady state phase
is used in Figs. 5 to 10.

Table 4. Dimensionless natural frequencies (ωnl) for nonlinear free vibration of
S-S CNTRC beams based on the ERM and EMT approaches (V cnt

∗ = 0.12).

A

UD-CNTRC FGA-CNTRC FGX-CNTRC FGO-CNTRC

ERM
EMT

ERM
EMT

ERM
EMT

ERM
EMT

Aligned
CNTs

Oriented
CNTs

Aligned
CNTs

Oriented
CNTs

Aligned
CNTs

Oriented
CNTs

Aligned
CNTs

Oriented
CNTs

0 0.5766 0.5710 0.2625 0.4768 0.4699 0.2287 0.7012 0.6952 0.3246 0.4135 0.4075 0.1957

0.5 0.7189 0.7119 0.3273 0.6512 0.6430 0.3074 0.8223 0.8149 0.3809 0.5946 0.5874 0.2786

1 1.0296 1.0196 0.4687 1.0467 1.0357 0.4879 1.1044 1.0940 0.5119 0.9449 0.9346 0.4401

1.5 1.4000 1.3864 0.6373 1.4622 1.4476 0.6795 1.4555 1.4414 0.6749 1.3375 1.3236 0.6217

2 1.7939 1.7765 0.8167 1.8814 1.8629 0.8732 1.8368 1.8188 0.8518 1.7444 1.7265 0.8102

a) b)

c)

Fig. 5. Frequency ratio (Ω/ωl) versus amplitude for nonlinear forced vibration of
FGA-CNTRC beams with different volume fractions and end conditions; a) S-S, b) C-S, and

c) C-C (f = 0.01, c̄ = 0.01).
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Fig. 6. Frequency ratio (Ω/ωl) versus amplitude for nonlinear forced vibration of S-S
FG-CNTRC beams with different CNT distributions (V cnt

∗ = 0.12, f = 0.01, c̄ = 0.014).

Fig. 7. Nonlinear forced vibration frequency response for S-S FGA-CNTRC beams with
different values of dimensionless force amplitudes (V cnt

∗ = 0.12, c̄ = 0.01).

Fig. 8. Nonlinear forced vibration frequency response for S-S FGA-CNTRC beams with
different values of dimensionless damping coefficients (V cnt

∗ = 0.12, f = 0.01).
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a) b)

c)

Fig. 9. Nonlinear forced vibration frequency response for S-S FGA-CNTRC beams with
different values of elastic foundation parameters (V cnt

∗ = 0.12, f = 0.01, c̄ = 0.01); a) Kl

(Ks = Knl = 0), b) Ks (Kl = Knl = 0), c) Knl (Kl = Ks = 0).

The effect of orientation of the CNTs on the dimensionless natural frequencies
for nonlinear free vibration of S-S CNTRC beams with V cnt

∗
=0.12 is demon-

strated in Table 4. It can be seen that the values of frequencies for beams re-
inforced with aligned-straight CNTs based on the ERM and EMT methods are
almost the same and more than those of randomly oriented CNT-reinforced
beams. Also, it is found that increasing the vibration amplitude enhances the
dimensionless natural frequencies. Figure 5 depicts the variations of frequency
ratio (Ω/ωl) in terms of dimensionless amplitude for the forced vibration of S-S,
C-C and C-S FGA-CNTRC beams with different volume fractions. As shown,
the vibration amplitude peak decreases by increasing the CNTs volume fraction.
It can be also concluded that S-S beams have the greatest value of vibration
amplitude peak which is followed by C-S and C-C boundary conditions, respec-
tively. Furthermore, it is readily seen that the S-S beam frequency response curve
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a) b)

c)

Fig. 10. Time response of S-S FGX-CNTRC beams (V cnt
∗ = 0.28, f = 0.01, c̄ = 0.1,

Ω = 1.2ωl); a) full-time history, b) transient phase, c) steady state phase.

has the most deviation to the right side. This is due to the nonlinear nature of
the problem, i.e. the beam with the highest nonlinearity in its behavior has the
most leaning. Figure 6 illustrates the influence of CNTs distribution patterns on
the forced vibration frequency response of S-S FG-CNTRC beams. The results
reveal that FGO and FGX distributions possess the highest and lowest values of
maximum amplitude peak, respectively. It is also found that the least deviation
belongs to the beam with the stiffest CNT distribution pattern.

The effects of dimensionless force amplitude on the forced vibration frequency
response of FGA-CNTRC beams are investigated in Fig. 7. As observed, enhanc-
ing the force amplitude increases the vibration amplitude peak. Figs. 8 and 9
exhibit the effects of nonlinear viscoelastic foundation parameters on the nonlin-
ear forced vibration frequency response of the CNTRC beams. It can be noticed
that the highest amplitude peak belongs to the beam with the lowest damping
coefficient. It is also found that the variation of damping coefficient only changes
the maximum amount of the amplitude. The linear and shear coefficients of the
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foundation have similar effects on the maximum amplitude peak while enhancing
these coefficients yields to the reduction of the amplitude. Also, by increasing
the linear and shear parameters, the effect of nonlinear coefficient of the founda-
tion is diminished and accordingly, the leaning of the frequency response curve
is decreased. On the other hand, although magnifying the nonlinear coefficient
of the foundation reduces the amplitude peak as well, however, it increases the
nonlinear stiffness of the foundation and results in bending of the curve to the
right side. One more conclusion is that by increasing the values of the foundation
parameters, the stiffness of the beam enhances and subsequently, the effect of the
foundation on the frequency response of the beam decreases. The forced vibra-
tion time response of S-S FGX-CNTRC beams under the action of an external
distributed harmonic excitation is plotted in Fig. 10. It is observed that in the
transient phase, the beam oscillates irregularly, but in the steady state phase,
the vibration amplitude remains constant. Also, the steady state response of the
beam is independent of the initial conditions.

6. Conclusions

In this work, the analytical solutions for the frequency and time response
of nonlinear forced vibration of FG-CNTRC beams are presented. It is assumed
that the beam is subjected to a transverse harmonic load and resting on a nonlin-
ear viscoelastic foundation. The aligned- or randomly oriented-straight CNTs in
a polymeric matrix are considered as the reinforcements of the beams. The ma-
terial properties of the beam are graded through the thickness direction with dif-
ferent distribution patterns and both the extended rule of mixture and Eshelby–
Mori–Tanka approaches are utilized to predict the effective material properties.
The governing equation of motion of the FG-CNTRC beams is derived via Euler–
Bernoulli beam theory in conjunction with Hamilton’s principle and von Kármán
strain-displacement relations. Using the variational iteration method, the govern-
ing equation is solved and closed form expressions for forced vibration frequency
and time responses of the nanocomposite beam are provided. The correctness of
the current procedure is established through comparing the present results with
those available in the literature. According to the developed analytical solutions,
a parametric study is conducted to examine the influence of different parameters
such as CNTs distribution, CNTs volume fraction, CNTs orientation, vibration
amplitude, boundary conditions, the external excitation amplitude and the foun-
dation coefficients on the vibrational properties of the FG-CNTRC beams. The
results reveal that enhancing the CNTs volume fraction or the viscoelastic foun-
dation parameters decreases the maximum amplitude peak. It is also found that
increasing the external force amplitude results in larger amplitude peaks. Fur-
thermore, the FGO distribution of CNTs possesses the highest amplitude peak.
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Appendix

c1 = 8µ2θ5(θ
2
5 + 4µ2)(θ2

5 + 16µ2)(θ2
5 + 36µ2)(A.1)

c2 = − 8µ(θ2
5 + 16µ2)

{

X2(Xθ3 + 2θ2)θ
4
5 + µXY (3Xθ3 + 8θ2)θ

3
5(A.2)

+ 2µ2
[

3Xθ3(6X
2 + Y 2) + 4θ2(7X

2 + 2Y 2)
]

θ2
5

+ 6Y µ3(Y 2θ3 + 15θ3X
2 + 16θ2X)θ5

+ 24Xµ4θ3(6Y
2 +X2)

}

+ 960Y µ6θ3θ5(3X
2 − Y 2)

+ 3840Xµ7θ3(3Y
2 −X2)

+ Y θ5(θ
2
5 + 4µ2)(θ2

5 + 16µ2)(θ2
5 + 36µ2)(4µ2 − 4θ1 + θ2

5)

+Xµθ5(θ
2
5 + 4µ2)(θ2

5 + 16µ2)(θ2
5 + 36µ2)(4µ2 − 4θ1 + θ2

5)τ,

c3 = 8µ2(θ2
5 + 16µ2)

{

X2(Xθ3 + 2θ2)θ
3
5 + 2µXY (3Xθ3 + 16θ2)θ

2
5(A.3)

+ 6µ2
[

Xθ3(5X
2 + 3Y 2) + 8θ2(X

2 + 2Y 2)
]

θ5

+ 24Y µ3θ3(6X
2 + Y 2)

}

− 960Xµ6θ3(X
2 − 3Y 2)

− 3840Y µ7θ3(3X
2 − Y 2)

− Y µθ5(θ
2
5 + 4µ2)(θ2

5 + 16µ2)(θ2
5 + 36µ2)(4µ2 − 4θ1 + θ2

5)τ,

c4 = 32µ2θ2θ5(θ
2
5 + 16µ2)

[

XY (12µ2 − θ2
5) + 4µθ5(X

2 − Y 2)
]

,(A.4)

c5 = 16µ2θ2θ5(θ
2
5 + 16µ2)

[

(12µ2 − θ2
5)(X

2 − Y 2) − 16XY µθ5
]

,(A.5)

c6 = − 16µ2θ2θ5(θ
2
5 + 16µ2)(θ2

5 + 36µ2)(X2 + Y 2),(A.6)

c7 = 2µ2θ3θ5(θ
2
5 + 36µ2)(A.7)

×
[

Y (Y 2 − 3X2)(θ2
5 − 8µ2) + 6Xµθ5(X

2 − 3Y 2)
]

,

c8 = 2µ2θ3θ5(θ
2
5 + 36µ2)(A.8)

×
[

−X(X2 − 3Y 2)(θ2
5 − 8µ2) + 6Y µθ5(Y

2 − 3X2)
]

,

c9 = 6µ2θ3(θ
2
5 + 16µ2)(θ2

5 + 36µ2)(X2 + Y 2)(A.9)

×
[

2µ(X − Y ) − θ5(X + Y )
]

.
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