PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The first geological record of a palaeotsunami on the southern coast of the Baltic Sea, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tsunami deposits were unknown along the southern coast of the Baltic Sea for a long time. The results of present research provided evidence of high-energy event layers. They occur on the bottom of two hemispherical hollows that are cut into glaciolimnic silt and glaciofluvial sand and gravel from the Late Weichselian Age. The event deposits are represented by poorly sorted marine sand with admixtures of pebbles and allochthonous detritus of biogenic origin: marine, brackish and occasionally freshwater shells and shell debris of molluscs and snails, plant macrofossils from the marine nearshore zone, shreds and lumps of peaty material, gyttja and organogenic silt, lumps of charcoal, wood pieces and tree branches and trunks. All these features are commonly considered indicative of tsunamis. The age of the biogenic detritus found in the tsunami layer ranges from 10 390 to 6 630 cal. yr BP, whereas the oldest gyttja covering the event layers is 6 600 cal. yr BP old. This means that the tsunami occurred between 6 630 and 6 600 cal. yr BP. Various causes of tsunami event have been taken into consideration, including the impact of meteorites within the coastal plain and the littoral zone of the southern Baltic Sea.
Rocznik
Strony
417--440
Opis fizyczny
Bibliogr. 107 poz., rys., tab., wykr.
Twórcy
autor
  • University of Szczecin, Institute of Marine and Coastal Sciences, Aleje Mickiewicza 18, 70-383 Szczecin, Poland
  • Adam Mickiewicz University, Institute of Geoecology and Geoinformation, Dzięgielowa 27, 61-680 Poznań, Poland
autor
  • Adam Mickiewicz University, Institute of Geology, Maków Polnych 16, 61-606 Poznań, Poland
autor
  • Adam Mickiewicz University, Faculty of Physics, Umultowska 85, 61-614, Poznań, Poland
  • Poznań Radiocarbon Laboratory, Rubież 46, 61-612, Poznań, Poland
  • University of Szczecin, Institute of Marine and Coastal Sciences, Aleje Mickiewicza 18, 70-383 Szczecin, Poland
Bibliografia
  • 1. Abrantes, F., Alt-Epping, U., Lebreiro, S., Voelker, A., Schneider, R., 2008. Sedimentological record of tsunamis on shallow-shelf areas: the case of the 1969 AD and 1755 AD tsunamis on the Portuguese Shelf off Lisbon. Marine Geology, 249: 283-293.
  • 2. Benson, B.E., Grimm, K.A., Clague, J.J., 1997. Tsunami deposits beneath tidal marshes on northwestern Vancouver Is I and, British Columbia. Quaternary Research, 48: 192-204.
  • 3. Blott, S.J., Pye, K., 2001. Gradistat: a grain size distribution and statistics package for analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26: 1237-1248.
  • 4. Bogaczewicz-Adamczak, B., Fedorowicz, S., Gołębiewski, R., Miotk, G., 1982. Polodowcowa historia rejonu jeziora Gardno (in Polish). Zeszyty Naukowe Uniwersytetu Gdańskiego, Geografia, 12: 27-49.
  • 5. Bondevik, S., Lrvholt, F., Harbitz, C., Mangerud, J., Dawson, A.D., Swendsen, J.I., 2005. The Storegga Slide tsunami - comparing field observations with numerical simulations. Marine and Petroleum Geology, 22: 195-208.
  • 6. Bronk Ramsey, C., Lee, S., 2013. Recent and planned development of the Program OxCal. Radiocarbon, 55: 720-730.
  • 7. Bryant, E.A., 2008. Tsunami. The Underrated Hazard. Cambridge University Press, New York.
  • 8. Bryant, E.A., Nott, J., 2001. Geological indicators of large tsunami in Australia. Natural Hazards, 24: 231-249.
  • 9. Bryant, E.A., Young, R.W., Price, D.M., 1996. Tsunami as a major control on coastal evolution, southeastern Australia. Journal of Coastal Research, 12: 831-840.
  • 10. Bourgeois, J., 2009. Geological effects and records of tsunamis. In: The Sea, 15: Tsunamis (eds. A.R. Robinson and E.N. Bernard): 53-91. Harvard University Press.
  • 11. Choowong, M., Murakoshi, N., Hisada, K., Charusiri, P., Charoentitirat, V., Jankaew, K., Kanjanapayont, P., Phantuwongraj, S., 2008. Indian Ocean tsunami inflow and outflow at Phuket, Thailand. Marine Geology, 248: 179-192.
  • 12. Clague, J.J., Bobrowsky, P.T., 1994a. Evidence for a large earthquake and tsunami 100-400 years ago on western Vancouver Island, British Columbia. Quaternary Research, 41: 176-184.
  • 13. Clague, J.J., Bobrowsky, P.T., 1994b. Tsunami deposits beneath tidal marshes on Vancouver Island, British Columbia. GSA Bulletin, 106: 1293-1303.
  • 14. Clague, J.J., Bobrowski, P.T., Hamilton, T.S., 1994. A sand sheet deposited by tsunami at Port Alberni, British Columbia. Estuarine and Coastal Shelf Science, 38: 413-421.
  • 15. Clague, J.J., Bobrowsky, P.T., Hutchinson, I., 2000. A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews, 19: 849-863.
  • 16. Dawson, A.G., 1994. Geomorphological effects of tsunami run-up and backwash. Geomorphology, 10: 83-94.
  • 17. Dawson, A.G., Shi, S.Z., 2000. Tsunami deposits. Pure and Applied Geophysics, 157: 875-897.
  • 18. Dawson, A.G., Stewart, I., 2007. Tsunami deposits in geological record. Sedimentary Geology, 200: 166-183.
  • 19. Dawson, A.G., Lockett, P., Shi, S., 2004. Tsunami hazards in Europe. Environment International, 304: 577-585.
  • 20. Dominey-Howes, D., 2002. Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management. Natural Hazards, 25: 195-224.
  • 21. Dominey-Howes, D., 2007. Geological and historical records of tsunami in Australia. Marine Geology, 239: 99-123.
  • 22. Dominey-Howes, D., Humphreys, G.S., Hesse, P.P., 2006. Tsunami and paleotsunami depositional signatures and their potential value in understandi ng the late Holocene tsunami record. The Holocene, 16: 1095-1107.
  • 23. Engel, M., Brückner, H., 2011. The identification of palaeo-tsunami deposits - a major chalienge in coastal sedimentary research. Coastline Reports, 17: 65-80.
  • 24. Friedman, G.M., 1961. Distinction between dune, beach and river sands from theirtextural characteristics. Journal of Sedimentary Petrology, 31: 541-592.
  • 25. Friedman, G.M., 1967. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river. Journal of Sedimentary Petrology, 37: 327-354.
  • 26. Friedman, G.M., 1979. Differences in size distributions of populations of particles among sands of various origins. Sedimentology, 26: 859-862.
  • 27. Fujino, S., Naruse, H., Suphawajruksakul, A., Jarupongsakul, T., Murayama, M., Ichihara, T., 2008. Thickness and grain-size distribution of Indian Ocean tsunami deposits at Khao Lak and Phra Thong Island, southwesten Thailand. In: Tsunamites - Features and Implications (eds. T. Shiki, Y. Tsuji, T. Yamazaki and K. Minoura): 123-132. Elsevier B.V., Amsterdam.
  • 28. Fujiwara, O., Masuda, F., Sakai, T., Irizuki, T., Fuse, K., 2000. Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. Sedimentary Geology, 135:219-230.
  • 29. Gelfenbaum, G., Jaffe, B.E., 2003. Erosion and sedimentation from 17 July, 1998 Papua New Guinea tsunami. Pure and Applied Geo physics, 160: 1969-1999.
  • 30. Goff, J.R., Rouse, H.L., Jones, S.L., Hayward, B.W., Cochran, U., McLea, W., Dickinson, W.W., Morley, M.S., 2000. Evidence for an earthquake and tsunami about 3100-3400 yr ago, and other catastrophic saltwater inundation recorded in a coastal lagoon, New Zealand. Marine Geology, 170: 231-249.
  • 31. Goff, J., Chagué-Goff, C., Nichol, S., 2001. Paleotsunami deposits: a New Zealand perspective. Sedimentary Geology, 143: 1-6.
  • 32. Goff, J., Dudley, W.C., de Maintenon, M.J., Cain, G., Coney, J.P., 2006. The largest local tsunami in 20th century Hawaii. Marine Ge ol ogy, 226: 65-79.
  • 33. Goff, J., Pearce, S., Nichol, S.L., Chagué-Goff, C., Horrocks, M., Strotz, L., 2010. Multi-proxy records of regionally-sourced tsunamis, New Zealand. Geomorphology, 118: 369-382.
  • 34. Goff, J., Terry, J.P., Chagué-Goff, C., Goto, K., 2014. What is a mega-tsunami? Marine Geology, 358: 12-17.
  • 35. Haines, P.W., 2005. Impact cratering and distal ejecta: the Australian record. Australian Journal of Earth Science, 52: 481-507.
  • 36. Hemphill-Haley, E., 1996. Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene, 6: 439-448.
  • 37. Hills, J.G., Goda, M.P., 1998. Tsunami from asteroid and comet impacts: The vulnerability of Europe. The International Journal of the Tsunami Society, 16: 3-10.
  • 38. Hindson, R.A., Andrade, C., Dawson, G.A., 1996. Sedimentary processes associated with the tsunami generated by the 1755 Lisbon earthquake on the Algarve coast, Portugal. Physics and Chemistry of the Earth, 21: 57-63.
  • 39. Hori, K., Kuzumoto, R., Hirouchi, D., Umitsu, M., Janjira- wuttikul, N., Patanakong, B., 2007. Horizontal and vertical variation of 2004 Indian tsunami deposits: an example of two transects along the western coast of Thailand. Marine Geology, 239: 163-172.
  • 40. Hutchison, I., Guilbault, J.-P., Clague, J.J., Bobrowsky, P.T., 2000. Tsunamis and tectonic deformation at the northern Cascadia margin: a 3000-year record from Deserted Lake, Vancouver Island, British Columbia, Canada. The Holocene, 10: 429-439.
  • 41. Jaffe, B.E., Gelfenbaum, G., 2007. A simple model for calculating tsunami flow speed from tsunami deposits. Sedimentary Geology, 200: 347-361.
  • 42. Jagnow, B., Gosselck, F., 1987. Bestimmungsschlüssel für die Gehäuseschnecken und Muscheln der Ostsee. Mitteilungen der Zoologischen Museum Berlin, 63: 191-268.
  • 43. Kijko, A., Skordas, E., Wahlström, R., Mäntyniemi, P., 1993. Maximum likelihood estimation of seismic hazard for Sweden. Natural Hazards, 7: 41-57.
  • 44. Kokociński, M., Szczuciński, W., Zgrundo, A., Ibragimow, A., 2009. Diatom assemblages in 26 December 2004 tsunami deposits from coastal zone of Thailand as sediment provenance indicators. Polish Journal of Environmental Studies, 18: 93-101.
  • 45. Kortegas, S., Dawson, A.G., 2007. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sedimentary Geology, 200: 208-221.
  • 46. Kozarski, S., 1963. Late Glacial disappearance of dead ice in Western Great Poland Lowl and (in Polish with Engli sh summary). Badania Fizjograficzne nad Polską Zachodnią, 11: 51-60.
  • 47. Kring, D.A., 1997. Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment. Meteoritics and Planetary Science, 32: 517-530.
  • 48. Lowe, D.J., de Lange, W.P., 2000. Volcano-meteorological tsunamis, the c. AD 200 Taupo eruption (New Zeland) and the possibility of a global tsunami. The Hol ocene, 10: 401-407.
  • 49. Ložek, V., 1964. Quartärmollusken der Tschechoslowakei. Rozpravy Ustredniho Ustavu Geologickeho, 31: 3-374.
  • 50. Lutyńska, M., 2008. Phases of development of Lake Gardno based on geochemical and diatomological analysis (in Polish with English summary). In: Holoceńskie przemiany wybrzeży i wód południowego Bałtyku - przyczyny, uwarunkowania i skutki, Ogólnopolska Konferencja Naukowa, Smołdzino, 6-9.05.2008 (eds. K. Rotnicki, J. Jasiewicz and M. Woszczyk): 87-100. TEKST, Poznań-Bydgoszcz.
  • 51. Mamo, B., Strotz, L., Dominey-Howes, D., 2009. Tsunami sediments and their foraminiferal assemblages. Earth-Science Review, 96: 263-278.
  • 52. Massel, S.R., 2012. Tsunami in coatal zone due to meteorite impact. Coastal Engineering, 66: 40-49.
  • 53. Moore, G.W., Moore, J.G., 1988. Large-scale bed forms in boulder gravel produced by giant waves in Hawaii. GSA Special Papers, 229: 101-110.
  • 54. Moore, A.L., McAdoo, B.G., Ruffman, A., 2007. Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfounland. Sedimentary Geology, 200: 336-346.
  • 55. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sedimentary Geology, 200: 184-207.
  • 56. Mörner, N.-A., 1996. Liquefaction and varve deformation as evidence of paleoseismic events and tsunamis. The autumn 14,430 BP case in Sweden. Quaternary Science Review, 15: 939-948.
  • 57. Mörner, N.-A., 1999. Paleo-tsunamis in Sweden. Physics and Chemistry of the Earth, 24: 443-448.
  • 58. Mörner, N.-A., 2003. Paleoseismicity of Sweden - a novel paradigm. In: A contribution to INQUA from Sub-Commission no Paleoseismology of the INQUA Commission on Neotectonics, Reno.
  • 59. Mörner, N.-A., 2004. Active faults and paleoseismicity in Fennoscandia, especially Sweden. Primary structures and secondary effects. Tectonophysics, 380: 139-157.
  • 60. Mörner, N.-A., 2005. An interpretation and catalogue of palaeoseismicity in Sweden. Tectonophysics, 408: 265-307.
  • 61. Mörner, N.-A., 2008a. Paleoseismicity and uplift of Sweden. Guidebook, Excursion 11 at 33rd IGC, Oslo.
  • 62. Mörner, N.-A., 2008b. Tsunami events within the Baltic. Polish Geological Institute Special Papers, 23: 71-76.
  • 63. Mörner, N.-A., 2011. Paleoseismology: the application of multiple parameters in four case studies in Sweden. Quaternary International, 242: 65-75.
  • 64. Mörner, N.-A., Dawson, S., 2011. Traces of tsunami events in off- and on-shore environments. case studies in the Maldives, Scotland and Sweden. In: The Tsunami Threat: Research and Technology (ed. N.-A. Mörner): 371-388. InTech.
  • 65. Muszyński, A., Stankowski, W., Pilski, A.S., Kryza, R., Nowak, M., 2012a. Iron meteorite shower in Morasko, Przełązy, Jankowo Dolne. In: The Largest Iron Meleorite Shower in Central Europe (eds. A. Muszyński, R. Kryza, Ł. Karwowski, A.S. Pilski and J. Muszyńska): 27-35. The Bogucki Wydawnictwo Naukowe, Poznań.
  • 66. Muszyński, A., Pilski, A.S., Muszyńska, J., Kryza, R., Karwowski, Ł., 2012b. Meteorite prospecting and new discoveries in the “Morasko Meteorite” reserve. In: The Largest Iron Meteorite Shower in Central Europe (eds. A. Muszyński, R. Kryza, Ł. Karwowski, A.S. Pilski and J. Muszyńska): 76-81. The Bogucki Wydawnictwo Naukowe, Poznań.
  • 67. Nanayama, F., Furukawa, R., Shigeno, K., Makino, A., Soeda, Y., Igarashi, Y., 2007. Nine unusually large tsunami deposits from the part 4000 years at Kiritappu marsh along the southern Kuril Trench. Sedimentary Geology, 200: 275-294.
  • 68. Nemtchinov, I.V., Svetsov, V.V., Kosarev, I.B., Golub, A.P., Popova, O.P., Shuvalov, V.V., 1997. Assessment of kinematic energy of meteoroids detected by satelite-based light sensors. Icarus, 130: 259-274.
  • 69. Perkins, S., 2009. First a meteorite, then a tsunami: relics of impact, aftermath in Hudson River sediments. Science News, 175: 13.
  • 70. Peters, R., Jaffe, B., Peterson, C., Gelfenbaum, G., Kelsey, H., 2001. An overview of tsunami deposits along the Cascadian margin. In: Proceedings of the 2001 International Tsunami Symposium: 479-490, Seattle.
  • 71. Peters, R., Jaffe, B., Gelfenbaum, G., 2007. Distribution and sedimentary characteristics of tsunami deposits along the Cascadian margin of western North America. Sedimentary Geology, 200: 372-386.
  • 72. Peterson, C.D., Cruikshank, K.M., 2011. Proximal records of paleotsunami runup in Bariage Creek Floodplains from Latei -Holocene great earthquakes in the Central Cascadian subduction zone, Oregon, USA. In: Tsunami - a Growing Disaster (ed. M. Mokhatari): 35-58. InTech.
  • 73. Peterson, C.D., Cruikshank, K.M., Jol, H.M., Schlichting, R.B., 2008. Minimum runup heights of paleotsunami from evidence of sand ridge overtopping at Cannon Beach, Oregon, central Cascadia Margin, U.S.A. Journal of Sedimentary Research, 78: 390-409.
  • 74. Peterson, C.D., Clague, J.J., Carver, G.A., Cruikshank, K.M., 2013. Recurrence intervals of major paleotsunamis as calibrated by historic tsunami deposits in three localities: Port Alberni, Cannon Beach, and Crescent City, along the Cascadia margin, Canada and USA. Natural Hazards, 66: 321-336.
  • 75. Piechocki, A., Dyduch-Falinowska, A., 1993. Mięczaki - małże (in Polish). Polskie Towarzystwo Hydrobiologiczne, PWN, Warszawa.
  • 76. Piotrowski, A., Szczuciński, W., Sydor, P., Krzymińśka, J., Seidler, J., 2013. Hypothetical tsunami deposits in the Rogowo area, Baltic Sea coast, North Poland. 4th Inlernalional INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 9-14 October 2013. Aachen, Germany.
  • 77. Raukas, A., Pirrus, R., Rajamåe, R., Tiirmaa, R., 1999. Tracing the age of the catastrophic impact event in sedimentary in sedimentary sequances around the Kaali meteorite craters on the Island of Saaremaa, Estonia. Journal of the European Network of Scientific and Technical Cooperation for the Cultural Heritage, 57: 434-453.
  • 78. Raukas, A., Tiirmaa, R., Kaup, E., Kimmel, K., 2001. The age of the Ilumetsa meteorite craters in southeast Estonia. Meteoritics and Planetary Science, 36: 1507-1514.
  • 79. Reimer, P.T., Bard, E., Bayliss, A., Beckj, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, K., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J., 2013. INTCAL13 AND MARINE13 radiocarbon age calibration curves 0-50,000 years cal. BP. Radiocarbon, 55: 1869-1887.
  • 80. Rotnicki, K., 2001. Stratygrafia i paleogeografia vistulianu Niziny Gardnieńsko-Łebskiej (in Polish). In: Przemiany środowiska geograficznego nizin nadmorskich południowego Bałtyku (ed. K. Rotnicki): 19-29. Bogucki Wydawnictwo Naukowe, Poznań.
  • 81. Rotnicki, K., 2008. Fossil peat horizons as estimators of former sea level: their present-day ordinates cont rolled by compact ion of underlying lagoon, lake and swamp deposits. In: Holoceńskie przemiany wybrzeży i wód południowego Bałtyku - przyczyny, uwarunkowania i skutki (in Polish with Eng lish summary). Ogólnopolska Konferencja Naukowa, Smołdzino, 6-9.05.2008 (eds. K. Rotnicki, J. Jasiewicz and M. Woszczyk): 87-100. TEKST, Poznań-Bydgoszcz.
  • 82. Rotnicki, K., 2009. Identification, age and causes of the Holocene ingressions and regressions of the Baltic on the Polish Middle Coast. Bogucki Wydawnictwo Naukowe, Poznań.
  • 83. Rotnicki, K., 2010. Geneza jezior przybrzeżnych Niziny Gardnieńsko-Łebskiej na tle budowy geologicznej i przemian paleogeograficznych obszaru (in Polish). In: POKOS'4 - IV Polska Konferencja Sedymentologiczna, Smołdzino, 21-26.06.2010 (eds. J. Rotnicka, W. Szczuciński, K. Skolasińska, R. Jagodziński and J. Jasiewicz): 154-62. Bogucki Wydawnictwo Naukowe, Poznań.
  • 84. Rotnicki, K., Borówka, R.K., 1995. The last cold period in the Gardno-Łeba Coastal Plain. Journal of Coastal Research, Special Issue, 22: 225-229.
  • 85. Rotnicki, K., Młynarczyk, Z., Szczot, S., 1999a. „MERES” - small-gabarit equipment for not deep geological borings (in Polish with English summary). In: Ewolucja geosystemów nadmori skich Południowego Bałtyku (eds. R.K. Borówka, Z. Młynarczyk and A. Wojciechowski): 161-168. Bogucki Wydawnictwo Naukowe, Poznań-Szczecin.
  • 86. Rotnicki, K., Borówka, R.K., Pazdur, A., Hałas, S., Krzymińska, J., Witkowski, A., 1999b. Main phases of the Southern Baltic transgression on the Polish Middle Coast during the Holocene. Quaternary Studies in Poland, 16: 67-79.
  • 87. Rotnicki, K., Czerniawska, J., Muszyński, A., Michalik, M., 2008. Fossil hollows at Rowy (Gardno-Łeba Coastal Plain, Pol ish Middle Coast): evidence of extreme storm surge or meteorite impact in the Middle Holocene - results of the preliminary study. In: International Conference on Environmental Impact of Tsunami, Book of Abstracts, September 25-28, 2008, Słubice-Poznań (eds. S. Lorenc and W. Szczuciński): 92-93. Adam Mickiewicz University and The Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP).
  • 88. Rotnicki, K., Alexandrowicz, S.W., Pazdur, A., Goslar, T., Borówka, R.K., 2009a. Stages of the formation of the Łeba barrier-lagoon system on the basis of the geological cross-section near Rąbka (southern Baltic coast, Poland). Studia Quaternaria, 26: 3-24.
  • 89. Rotnicki, K., Czerniawska, J., Lutyńska, M., Muszyński, A., Michalik, M., 2009b. Fossil hollows without outlets at Rowy (Gardno-Łeba Coastal Plain, Polish Middle Coast) remnants of late glacial dead ice, evidence of extreme storm surge or a meteorite impact in the Middle Holocene - results of preliminary study (in Polish with English abstract). Geography Series, 88: 467-492.
  • 90. Scheffers, A., Kelletat, D., 2003. Sedimentologic and geomorphologic tsunami imprints worldwide - a review. Earth-Science Review, 63: 83-92.
  • 91. Schlichting, R.B., Peterson, C.D., 2006. Mapped overland distance of paleotsunami high-velocity inundation in back-barrier wetlands of the Central Cascadia Margin, U.S.A. Journal of Geology, 114: 577-592.
  • 92. Shoemaker, E.M., MacDonald, F.A., Shoemaker, C.S., 2005. Geology of five small Austrai ian impact craters. Australian Journal of Earth Sciences, 52: 529-544.
  • 93. Skompski, S., 1991. Fauna czwartorzędowa Polski. Bezkręgowce (in Polish). Wydawnictwo Uniwersytetu Warszawskiego.
  • 94. Smith, D.E., Foster, I.D.L., Long, D., Shi, S., 2007. Reconstructing the pattern and depth of flow onshore in a palaeotsunami from associated deposits. Sedimentary Geology, 200: 362-371.
  • 95. Smoot, J.P., Litwin, R.J., Bischoff, J.L., Lund, S.J., 2000. Sedimentary record of the 1872 earthquake “Tsunami” at Owens Lake, southeast California. Sedimentary Geology, 135: 241 -254.
  • 96. Stankowski, W., 2010. Morasko Metorite. Geology Series, 19. Adam Mickiewicz University, Poznań.
  • 97. Stankowski, W.T.J., Katrusiak, A., Budzianowskil, A., 2006. Crystallographic variety of magnetic spherules from Pleistocene and Holocene sediments in the northern fore i and of Morasko-Meteorite Reserve. Planetary Space Science, 54: 60-70.
  • 98. Szczuciński, W., 2008. Potential geological and environmental impacts of tsunami waves on the coastal zone of Baltic Sea (in Polish with English summary). In: Holoceńskie przemiany wybrzeży i wód południowego Bałtyku - przyczyny uwarunkowań i skutki (eds. K. Rotnicki, J. Jasiewicz and M. Woszczyk): 119-125. Poznań-Bydgoszcz.
  • 99. Uścinowicz, S., 2003. Relative sea-level changes, glacio-isostatic rebound and shoreline displacement in the southern Baltic. Polish Geological Institute Special Papers, 10: 1-79.
  • 100. Uścinowicz, S., 2006. A relative sea-level curve for the Polish Southern Baltic Sea. Quaternary International, 145-146: 86-105.
  • 101. Vött, A., Brückner, H., Brockmüller, S., Handl, M., May, S.M., Gaki-Papanastassiou, K., Herd, R., Lang, F., Maroukian, H., Nelle, O., Papanastassiou, D., 2009. Traces of Holocene tsunamis across the Sound of Lefkada, NW Greece. Global Planetary Change, 66: 112-128.
  • 102. Witter, R.C., 1999. Late Holocene paleosesmicity, tsunami and relative sea-level changes along the south-central Cascadia subduction zone, southern Oregon, U.S.A. Ph.D thesis, University of Oregon.
  • 103. Wojciechowski, A., 1990. Lithofacies analysis of Gardno Lake deposits (in Polish with English summary). Seria Geografia, 49. Adam Mickiewicz University, Poznań.
  • 104. Wojciechowski, A., 2000. Palaeohydrological changes in the central Wielkopolska Lowland during the last 12,000 years on the basis of deposits of the Kórnik-Zaniemyśl Lakes (in Polish with English summary). Seria Geografia, 63. Wyd. Naukowe UAM, Poznań.
  • 105. Young, R.W., Bryant, E.A., 1992. Catastrophic wave erosion on the southeastern coast of Australia: impact of the Lanai tsunamis ca. 105 ka. Geology, 20: 199-202.
  • 106. Wünnemann, K., Weiss, R., 2015. The meteorite impact-induced tsunami hazard. Philosophical Transactions of the Royal Society A, 373: 20140381.
  • 107. Żmudziński, L., 1982. Zoobentos litoralu Bałtyku (in Polish). In: Zoobentos Bałtyku lat sześćdziesiątych (ed. L. Żmudziński and J. Ostrowski): 126-133. Wyd. Wyższej Szkoły Pedagogicznej, Słupsk.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b75fdaf6-e70c-4ec9-8850-a402d7f1a64f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.