PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Alum sludge as a potential adsorbent for removing Cd(II) and Ni(II) ions from aqueous solutions – equilibrium studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research evaluates the possibility of using alum sludge from water treatment stations (WTS) as an effective adsorbent for Ni(II) and Cd(II). The physicochemical properties were determined of four alum sludge, from WTS Czaniec (AS-C), WTS Kozłowa Góra (AS-K), WTS Maczki (AS-M), and WTS Będzin (AS-B). The adsorption of ions was investigated by batch experiments at room temperature, a wide range of initial concentrations (1-1000 mg/L), and an adsorbent dose of 10 g/L. The experimental data were analysed by Freundlich, Langmuir and Dubinin-Radushkevich isotherms, using linear and nonlinear regression analysis. All alum sludge used in the study was found to have better binding capacities for Ni(II) ions than for Cd(II) ions. At the maximum initial concentration Ni(II) ions were bound in the following order: AS-K => AS-B => AS-M => AS-C, while Cd(II) ions were bound in the following order: AS-B => AS-M => AS-K => AS-C. The results indicated that the adsorption mechanism primarily involves ion exchange and also electrostatic interactions. It can be concluded that alum sludge is a promising adsorption material for the removal of metal ions from aqueous solutions.
Słowa kluczowe
Rocznik
Strony
89--105
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
  • Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
  • Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • 1. Ahmad, T., Ahmad, K., Alam, M., (2016). Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environmental Sciences, no. 35, pp. 950–955. https://doi.org/10.1016/j.proenv.2016.07.088
  • 2. Babatunde, A.O., Zhao, Y.Q., (2007). Constructive approaches towards water treatment works sludge management: an international review of beneficial re-uses. Critical Reviews in Environmental Science and Technology, no. 37, pp. 129–164. https://doi.org/10.1080/10643380600776239
  • 3. Babatunde, A.O., Zhao, Y.Q., Yang, Y., Kearney, P., (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, no. 136, pp. 108–115. https://doi.org/10.1016/j.cej.2007.03.013
  • 4. Barakwan, R.A., Trihadiningrum, Y., Bagastyo, A.Y., (2019). Characterization of alum sludge from Surabaya Water Treatment Plant, Indonesia. Journal of Ecological Engineering, no. 20, pp. 7–13. https://doi.org/10.12911/22998993/104619
  • 5. Calvete, T., Lima, E.C., Cardoso, N.F., Dias, S.L.P., Pavan, F.A., (2009). Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution–Kinetic, equilibrium, and thermodynamic studies. Chemical Engineering Journal, no. 155, pp. 627–636.
  • 6. Castaldi, P., Silvetti, M., Garau, G., Demurtas, D., Deiana, S., (2015). Copper(II) and lead(II) removal from aqueous solution by water treatment residues. Journal of Hazardous Materials, no. 283, pp. 140–147. https://doi.org/10.1016/j.jhazmat.2014.09.019
  • 7. Chi-Liang, Y., Dyi-Hwa, T., Tung-Tsang, L., (2011). Characterization of eco-cement paste produced from sludge. Chemosphere, no. 84, pp. 220–226. https://doi.org/10.1016/j.chemosphere.2011.04.050
  • 8. Dassanayake, K.B., Jayasinghe, G.Y., Surapaneni, A., Hetherington, C., (2015). A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Management, no. 38, pp. 321–335. https://doi.org/10.1016/j.wasman.2014.11.025
  • 9. Drozd, J., Licznar, M., Licznar, S.E., Weber, J., (1998). Gleboznawstwo z elementami mineralogii i petrografii. Wroclaw: Wydawnictwo Akademii Rolniczej we Wrocławiu.
  • 10. Dubinin, M.M., (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, no. 60, pp. 235–241. https://doi.org/10.1021/cr60204a006
  • 11. Dzieniszewska, A., Kyziol-Komosinska, J., Pająk, M., (2020). Adsorption and bonding strength of chromium species by ferrihydrite from acidic aqueous. PeerJ, no. 8:e9324. https://doi.org/10.7717/peerj.9324
  • 12. Foo, K.Y., Hameed, B.H., (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, no. 156, pp. 2–10. https://doi.org/10.1016/j.cej.2009.09.013
  • 13. Freundlich, H.M.F., (1906). Over the adsorption in solution. Journal of Physical Chemistry, no. 57, pp. 385–471.
  • 14. Gumińska, J., (2007). Badania wpływu sedymentacji w procesie dwustopniowej koagulacji substancji humusowych w wodzie na zdolność rozbitych kłaczków pokoagulacyjnych do powtórnej aglomeracji. Ochrona Środowiska, no. 29(2), pp. 9–12.
  • 15. Hargreaves, A.J., Vale, P., Whelan, J., Alibardi, L., Constantino, C., Dotro, G., Cartmell, E., Campo, P., (2018). Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater. Water Resources, no. 128, pp. 120–128. https://doi.org/10.1016/j.watres.2017.10.050
  • 16. Hou, Q.J., Meng, P.P., Pei, H.Y., Hu, W.R., Chen, Y., (2018). Phosphorus adsorption characteristics of alum sludge: Adsorption capacity and the forms of phosphorus retained in alum sludge. Materials Letters, no. 229, pp. 31–35. https://doi.org/10.1016/j.matlet.2018.06.102
  • 17. Hua, T., Haynes, R.J., Zhou, Y.-F., Boullemant, A., Chandrawana, I., (2015). Potential for use of industrial waste materials as filter media for removal of Al, Mo, As, V and Ga from alkaline drainage in constructed wetlands – Adsorption studies. Water Resources, no. 71, pp. 32–41. https://doi.org/10.1016/j.watres.2014.12.036
  • 18. Hovsepyan, A., Bonzongo, J.-C.J., (2009). Aluminium drinking water treatment residuals (Al-WTRs) as sorbent for mercury: implications for soil remediation. Journal of Hazardous Materials, no. 164, pp. 73–80. https://doi.org/10.1016/j.jhazmat.2008.07.121
  • 19. Ippolito, J.A., Barbarick, K.A., Elliott, H.A., (2011). Drinking water treatment residuals: a review of recent uses. Journal of Environmental Quality, no. 40, pp. 1–12. https://doi.org/10.2134/jeq2010.0242
  • 20. Ippolito, J.A., Scheckel, K.G., Barbarick, K.A., (2009). Selenium adsorption to aluminium- based water treatment residuals. Journal of Colloid and Interface Science, no. 338, pp. 48–55. https://doi.org/10.1016/j.jcis.2009.06.023
  • 21. Jarvis, P., Jefferson, B., Parsons, S.A., (2006). Floc structural characteristics using conventional coagulation for a high DOC, low alkalinity surface water source. Water Research, no. 40, pp. 2727–2737. https://doi.org/10.1016/j.watres.2006.04.024
  • 22. Jiao, J., Zhao, J., Pei, Y., (2017). Adsorption of Co(II) from aqueous solutions by water treatment residuals. Journal of Environmental Science, no. 52, pp. 232–239. https://doi.org/10.1016/j.jes.2016.04.012
  • 23. Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, no. 38, pp. 2221–2295. https://doi.org/10.1021/ja02268a002
  • 24. Liu, R., Zhao, Y., Sibille, C., Ren, B., (2016). Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption. Chemical Engineering Journal, no. 302, pp. 120–127. https://doi.org/10.1016/j.cej.2016.05.019
  • 25. Pająk, M., (2023). Alum sludge as an adsorbent for inorganic and organic pollutants removal from aqueous solutions: a review. International Journal of Environmental Science and Technology, no. 20, pp. 10953–10972. https://doi.org/10.1007/s13762-023-04854-4
  • 26. Silvetti, M., Castaldi, P., Garau, G., Demurtas, D., Deiana, S., (2015). Sorption of cadmium (II) and zinc (II) from aqueous solution by water treatment residuals at different pH values. Water, Air, & Soil Pollution, no. 226, pp. 313. https://doi.org/10.1007/s11270-015-2578-0
  • 27. Siswoyo, E., Mihara, Y., Tanaka, S., (2014). Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Applied Clay Science, no. 97–98, pp. 146–152. https://doi.org/10.1016/j.clay.2014.05.024
  • 28. Szlachta, M., Adamski, W., (2009). Analiza wpływu pylistego węgla aktywnego na właściwości sedymentacyjne i adsorpcyjne osadu pokoagulacyjnego. Ochrona Środowiska, no. 31, pp. 37–40.
  • 29. Terdputtakun, A., Arqueropanyo, O., Sooamiti, P., Janhom, S., Naksata, W., (2017). Adsorption isotherm models and error analysis for single and binary adsorption of Cd(II) and Zn(II) using leonardite as adsorbent. Environmental Earth Sciences, no. 76, 777. https://doi.org/10.1007/s12665-017-7110-y
  • 30. Zhou, Y.-F., Haynes, R.J., (2011). Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water, Air, & Soil Pollution, no. 215, pp. 631–643. https://doi.org/10.1007/s11270-010-0505-y
  • 31. Zhou, Y.-F., Haynes, R.J., (2012). A comparison of water treatment sludge and red mud as adsorbents of As and Se in aqueous solution and their capacity for desorption and regeneration. Water, Air, & Soil Pollution, no. 223, pp. 5563–5573. https://doi.org/10.1007/s11270-012-1296-0
  • 32. World Water Development Report 2018 – The United Nations World Water Development Report, Nature-based Solutions for Water, 19 March 2018, New York, United States. https://www.unwater.org/publications/world-water-development-report-2018
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b75fc3b4-49fc-4fd8-b938-e07022beadbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.