PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacture of Clay Aggregate Doped with Pozzolan Destined for Lightweight Concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, marl clay was used because these materials have a very important industrial potentiality in several fields, namely ceramics. The objective was manufacturing expanded clay aggregate (ECA), with two main ingredients of marl and pozzolan at different percentages in order to integrate them into the concrete as aggregate. The physicochemical parameters of the mixture marl / Pozzolan was discussed and the results of the analyses, allowed deducing that the sample with 15% pozzolan has the most expansion rate of 16.8%, and its density of 1232 kg/m3 is in accordance with the international standard of expanded aggregates. The density of the concrete decreases with the quantity of ECA added and reaches its minimum with 1671 kg/m3 according to concrete with 50% of the expanded aggregate. The bending tests show the increase of the mechanical strength as a function of the quantities of aggregate added. The results show a very important potential with the addition of clay aggregates, density and water absorption decrease with the increase of the mechanical resistance.
Rocznik
Strony
349--359
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Laboratory of Intelligent Systems, Georesources and Renewable Energies, Geology Department, Sidi Mohamed Ben Abdellah University, Fes, Morocco
autor
  • Laboratory Waves and Complex Environnement, Normondie University, UMR 6294 CNRS, France
  • Laboratory of Mechanical Engineering, Mechanical Department, Sidi Mohamed Ben Abdellah University, Fes, Morocco
  • Laboratory of Intelligent Systems, Georesources and Renewable Energies, Geology Department, Sidi Mohamed Ben Abdellah University, Fes, Morocco
Bibliografia
  • 1. Leblanc D., Olivier P. 1984. Role of strike-slip faults in the Betic-Rifian orogeny. Tectonophysics, 101(3–4), 345–355.
  • 2. Tejera de Leon J., Boutakiout M., Ammar A., Ait Brahim L., El Hatimi N. 1995. The Central Rif Basins (Morocco); markers of out-of-sequence thrusting of terminal Miocene age in the core of the chain. The Bulletin of the Geological Society of France, 166(6), 751–761.
  • 3. Durand M. 1972. Geotechnical properties of marls and clays from the Upper Triassic of Lorraine. Ph.D. Thesis, Henri Poincaré University, Nancy.
  • 4. Reynolds R.C. 1980. Interstratified clay minerals.
  • 5. Grim R.E. 1953. Clay mineralogy, 76(4), 317, LWW.
  • 6. Mesrar, L., ELarousi, O., Lakrim, M., Jabrane, R. 2011. Characterization of miocenous marnes in the fes region before and after doping with manganese oxide (MnO2). Geomaghreb, 7, 13–20.
  • 7. Allison L.E., Moodie C.D. 1965. Carbonate. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 1379–1396.
  • 8. Mesrar, L., Benamar, A., Mesrar, H., Jabrane, R. 2021. Physical and Mechanical Properties Improvement of Miocene Marls (Morocco) Doped by Iron Oxide Fe2O3. In: Sustainable Environment and Infrastructure. Springer, Cham, 259–269.
  • 9. Mesrar L., Mesrar H., Jabrane R. 2014. Preparation and characterization of Miocene clay powders in the region of Fez (Morocco) after doping with metal oxides Al2O3. Journal of Computer Science and Engineering Research (JCSER), (2), 1–4.
  • 10. Yew M.K., Yew M.C., Han Beh J., Saw L.H., Lee F.W., Lee Y.L. 2021. Mechanical properties of barchip polypropylene fibre-reinforced lightweight concrete made with recycled crushedlightweight expanded clay aggregate. Frontiers in Materials, 410.
  • 11. Becker P.F.B., Effting C., Schackow A. 2022. Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cement and Concrete Composites, 125, 104283.
  • 12. Ye P., Chen Z., Su W. 2022. Mechanical properties of fully recycled coarse aggregate concrete with polypropylene fiber. Case Studies in Construction Materials, 01352.
  • 13. Zhang M.H., Gjorv O.E. 1992. Penetration of cement paste into lightweight aggregate, Cement and Concrete Research, 22(1), 47–55.
  • 14. Wasserman R., Bentur A. 1997. Effect of lightweight fly ash aggregate microstructure on the strength of concretes. Cement and Concrete Research, 27(4), 525–537.
  • 15. Akwilapo L.D., Wiik K. 2003. Ceramic properties of Pugu kaolin clays. Part I: Porosity and modulus of rupture. Bulletin of the Chemical Society of Ethiopia, 17, 2.
  • 16. Azarhomayun F., Haji M., Kioumarsi M., Shekarchi M. 2022. Effect of calcium stearate and aluminum powder on free and restrained drying shrinkage, crack characteristic and mechanical properties of concrete. Cement and Concrete Composites, 125, 104276.
  • 17. Güneyisi E., Gesoğlu M., Karaoğlu S., Mermerdaş K. 2012. Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials, 34, 120–130.
  • 18. Bheel N., Kumar A., Shahzaib J., Ali Z., Ali M. 2021. An investigation on fresh and hardened properties of concrete blended with rice husk ash as cementitious ingredient and coal bottom ash as sand replacement material. Silicon, 1–12.
  • 19. Wong L.S., Chandran S.N., Rajasekar R.R., Kong S.Y. 2022. Pozzolanic characterization of waste newspaper ash as a supplementary cementing material of concrete cylinders. Case Studies in Construction Materials, 01342.
  • 20. Khudhair M.H., Elyoubi M.S., Elharfi A. 2018. New eco-friendly hydraulic binder based on a combination of inorganic additions and organic admixture: Formulation and Characterization. Moroccan Journal of Chemistry, 6(2), 259–271.
  • 21. Khudhair M.H., Elyoubi M.S., Elharfi A. 2017. Comparative study of the influence of inorganic additions on the physical-chemical properties and mechanical performance of mortar and/or concrete. Moroccan Journal of Chemistry, 5(3), 493–504.
  • 22. Alireza H., Adedapo M.A., Aniekan E.D. 2021. Ductility and flexure of lightweight expanded clay basalt fiber reinforced concrete slab. Structural mechanics of engineering structures and constructions, 17(1), 74–81.
  • 23. Musial M.P., Grzymski F., Trapko T. 2021. The effect of the pre-wetting of expanded clay aggregate on the freeze-thaw resistance of the expanded clay aggregate concrete. Studia Geotechnica and Mechanica, 43(2), 65–73.
  • 24. Ghorbani A., Rabanifar H. 2021. The Effect of Lightweight Expanded Clay Aggregate on the Mitigation of Liquefaction in Shaking Table. Geotechnical and Geological Engineering, 39(3), 1861–1875.
  • 25. Baronet J., Sorelli L., Charron J. P., Vandamme M., Sanahuja J. 2022. A two-scale method to rapidly characterize the logarithmic basic creep of concrete by coupling microindentation and uniaxial compression creep test. Cement and Concrete Composites, 125, 104274.
  • 26. Melanie S. 2003. Elastic compatibility, mechanical behaviour and optimisation of lightweight aggregate concretes, Ph.D. Thesis, Laval University, Quebec.
  • 27. Bogas J.A., Gomes M.G., Real S. 2014. Bonding of steel reinforcement in structural expanded clay lightweight aggregate concrete: The influence of failure mechanism and concrete composition, Construction and Building Materials, 65, 350–359.
  • 28. Wang Y., Zhang S., Niu D., Fu Q. 2022. Quantitative evaluation of the characteristics of air voids and their relationship with the permeability and salt freeze–thaw resistance of hybrid steel-polypropylene fiber–reinforced concrete composites. Cement and Concrete Composites, 125, 104292.
  • 29. Zheng F., Hong S., Hou D., Dong B., Kong Z., Jiang R. 2021. Rapid visualization and quantification of water penetration into cement paste through cracks with X-ray imaging. Cement and Concrete Composites, 104293.
  • 30. Kornmann X., Rees M., Thomann Y., Necola A., Barbezat M., Thomann R. 2005. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Composites Science and Technology, 65(14), 2259–2268.
  • 31. Arib A., Sarhiri A., Moussa R., Remmal T., Gomina M. 2007. Caractéristiques structurales et mécaniques de céramiques à base d’argiles: influence de la source de feldspath. Comptes Rendus Chimie, 10(6), 502–510.
  • 32. Nshimiyimana P., Fagel N., Messan A., Wetshondo D. O., Courard L. 2020. Physico-chemical and mineralogical characterization of clay materials suitable for production of stabilized compressed earth blocks. Construction and Building Materials, 241, 118097.
  • 33. Pimraksa K., Chindaprasirt P. 2009. Lightweight bricks made of diatomaceous earth, lime and gypsum. Ceramics International, 35(1), 471–478.
  • 34. Silva V.M.D., Góis L.C., Duarte J.B., Silva J.B.D., Acchar W. 2014. Incorporation of ceramic waste into binary and ternary soil-cement formulations for the production of solid bricks. Materials Research, 17, 326–331.
  • 35. Aineto M., Acosta A., Iglesias I. 2006. The role of a coal gasification fly ash as clay additive in building ceramic. Journal of the European Ceramic Society, 26(16), 3783–3787.
  • 36. James J., Pandian P.K. 2018. Strength and microstructure of micro ceramic dust admixed lime stabilized soil. Revista de la Construcción. Journal of Construction, 17(1), 5–22.
  • 37. Matias G., Faria P., Torres I. 2014. Lime mortars with heat treated clays and ceramic waste: A review. Construction and Building Materials, 73, 125–136.
  • 38. Li L., Liu W., You Q., Chen M., Zeng Q. 2020. Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853.
  • 39. Nie L., Zhang Y. 2011. Study on the application of lightweight aggregate ceramsite concrete in building. In: Applied Mechanics and Materials. Trans Tech Publications Ltd, 573–576.
  • 40. Mydin M.O., Sahidun N.S., Yusof M.M., Noordin N.M. 2015. Compressive, flexural and splitting tensile strengths of lightweight foamed concrete with inclusion of steel fibre. Jurnal Teknologi, 75(5).
  • 41. Samson G., Phelipot-Mardelé A., Lanos C. 2017. A review of thermomechanical properties of lightweight concrete. Magazine of Concrete Research, 69(4), 201–216.
  • 42. Vandanapu S.N., Krishnamurthy M. 2018. Seismic performance of lightweight concrete structures. Advances in Civil Engineering.
  • 43. Kan A., Demirboğa R. 2009. A novel material for lightweight concrete production. Cement and Concrete Composites, 31(7), 489–495.
  • 44. Raimondo M., Dondi M., Gardini D., Guarini G., Mazzanti F. 2009. Predicting the initial rate of water absorption in clay bricks. Construction and Building Materials, 23(7), 2623–2630.
  • 45. Tharakarama T., Veni B., Krishna P.B. 2017. An experimental investigation on light weight foam cement blocks with quarry dust replacement for fine aggregate. Int. Res. J. Eng. Technol, 4, 844–850.
  • 46. Awoyera P.O., Akinmusuru J.O., Dawson A.R., Ndambuki J.M., Thom N.H. 2018. Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cement and Concrete Composites, 86, 224–237.
  • 47. Zhang M.H., Gjvorv O.E. 1991. Mechanical properties of high-strength lightweight concrete. Materials Journal, 88(3), 240–247.
  • 48. Wilson H.S., Malhotra V.M. 1988. Development of high strength lightweight concrete for structural applications. International Journal of Cement Composites and Lightweight Concrete, 10(2), 79–90.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b75ca272-058c-4ab8-b4b7-d9d1fa52fd23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.