PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Biomechanics of distal femoral fracture fixed with an angular stable LISS plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fractures of the distal end of the femur are infrequent and constitute less than 1% of all fractures. Only 3% to 6% of femoral fractures occur at the distal end. The two groups most at risk of the said fractures are young men and older women. The aim of treatment of fractures of the distal femur is to restore normal function of the knee joint. The authors asked themselves whether, following fixation of a 33-C2 fracture (according to the AO classification) with a LISS plate, a rehabilitation program can be undertaken immediately after surgery with the implementation of active movements in the knee joint of the operated limb. In order to answer this question, we created a digital model of a fractured femur fixed with the LISS method. The model was subjected to loads corresponding to the loads generated during active lifting of a limb extended in the knee joint and during flexing of a limb in the knee joint to the 90° angle. Interfragmentary movement (IFM) is one of the key parameters taken into account in the treatment of bone fractures. It allows classification of the treatment in terms of its quality both from the mechanical and histological points of view. We analyzed interfragmentary movement in all fracture gaps. The largest recorded displacement reached in our model was 243 μm, which, in the light of the literature data, should not interfere with bone consolidation, and thus implementation of active movement in the operated knee joint (keeping in mind the simplifications of the experimental method used) is possible in the early postoperative period.
Rocznik
Strony
57--65
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • 4 Military Clinical Hospital with Polyclinic Independent Public Health Care Institution, Department of Orthopedics and Traumatology, Wrocław, Poland
  • Institute of Materials Science and Applied Mechanics, Wrocław University of Technology, Wrocław, Poland
autor
  • Division of Biomedical Engineering and Experimental Mechanics, Wrocław University of Technology, Wrocław, Poland
Bibliografia
  • [1] COURT-BROWN C.M., CAESAR B., Epidemiology of adult fractures: A review, Injury, 2006, Vol. 37(8), 691–697.
  • [2] GWATHMEY F.W., JONES-QUAIDOO S.M., KAHLER D., HURWITZ S., CUI Q., Distal femoral fractures: Current concepts, J. Am. Acad. Orthop. Surg., 2010, Vol. 18(10), 597–607.
  • [3] MARTINET O., CORDEY J., HARDER Y., MAIER A., BÜHLER M., BARRAUD G., The epidemiology of fractures of the distal femur, Injury, 2000, Vol. 31 (Suppl 3C62-C63).
  • [4] DRAGAN S.F., UBRAŃSKI W., ŻYWIRSKI B., KRAWCZYK A., KULEJ M., DRAGAN S.Ł., Kyphosis correction after vertebroplasty in osteoporotic vertebral compression fractures, Acta Bioeng. Biomech., 2012, Vol. 14(4), 63–69.
  • [5] KONIECZNY G., WRZOSEK Z., Treatment ways after the fracture of upper part of femur in the aspect of early patient’s function, Acta Bioeng. Biomech., 2002, Vol. 4(2), 81–90.
  • [6] MÜLLER M.E., NAZARIAN S., KOCH P., Classification AO des fractures. Tome I. Les os longs, Springer-Verlag, 1st ed., Berlin, 1987.
  • [7] PERREN S.M., Physical and biological aspects of fracture healing with special reference to internal fixation, Clin. Orthop., 1979, Vol. 138, 175–196.
  • [8] KLEIN P., SCHELL H., STREITPARTH F., HELLER M., KASSI J.P., KANDZIORA F., BRAGULLA H., HASS N.P., DUDA G.N., The initial phase of fracture healing is specifically sensitive to mechanical conditions, J. Orthop. Res., 2003, Vol. 21, 662–669.
  • [9] FILIPIAK J., KRAWCZYK A., MORASIEWICZ L., Distribution of radiological density in bone regenerate in relation to cyclic displacements of bone fragments, Acta Bioeng. Biomech., 2009, Vol. 11(3), 3–9.
  • [10] FILIPIAK J., Assessment of the effect of hybrid implant systems in the Ilizarov fixator on the stability of fragments of the femur subjected to elongation, Acta Bioeng. Biomech., 2001, Vol. 3(1), 15–24.
  • [11] SCHELL H., THOMPSON M.S., BAIL H. J., HOFFMANN J.E., SCHILL A., DUDA G.N., LINENAU J., Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results, J. Biomech., 2008, Vol. 41, 3066–3072.
  • [12] TYLMAN D., SIWEK W., Long-term results of functional treatment in intraarticular knee fractures and multifragment fractures of the shaft of femurs, Clin. Orthop. Relat. Res., 1991, Vol. 272, 114–121.
  • [13] TYLMAN D., Czynnosciowe leczenie złamań, PZWL, Warszawa, 1998.
  • [14] FRIGG R., APPENZELLER A., CHRISTENSEN R., FRENK A., GILBERT S., SCHAVAN R., The development of the distal femur less invasive stabilization system (LISS), Injury, 2001, Vol. 32 (Suppl. 3SC24-SC31).
  • [15] AO Foundation, http://www.aofoundation.org
  • [16] CRISTOFOLINI L., VICECONTI M., Mechanical validation of whole bone composite tibia models, J. Biomech., 2000, Vol. 33, 279–288.
  • [17] BĘDZIŃSKI R., Biomechanika inzynierska – Zagadnienia wybrane, Oficyna Wydawnicza Politechniki Wrocławskiej, 1997.
  • [18] SMITH T.O., HEDGES C., MACNAIR R., SCHANKAT K., WIMHURST J.A., The clinical and radiological outcomes of the LISS plate for distal femoral fractures: A systematic review, Injury, 2009, Vol. 40(10), 1046–1063.
  • [19] ZLOWODZKI M., WILLIAMSON S., COLE P.A., ZARDIACKAS L.D., KREGOR P.J., Biomechanical evaluation of the less invasive stabilization system, angled blade plate, and retrograde intramedullary nail for the internal fixation of distal femur fractures, J. Orthop. Trauma, 2004, Vol. 18(8), 494–502.
  • [20] DENHAM R.A., Hip mechanics, J. Bone Joint. Surg., 1959, Vol. 41B(3), 550–557.
  • [21] MAQUET P.G.J., Biomechanics of the Knee, Springer-Verlag, 1983.
  • [22] AUGAT P., BURGER J., SCHORLEMMER S., HENKE T., PERAUS M., CLAES L., Shear movement at the fracture sit delays healing in a diaphyseal fracture model, J. Orthop. Res., 2003, Vol. 21(6), 1011–1017.
  • [23] CLAES L., AUGAT P., SUGER G., WILKE H., Influence of size and stability of the osteotomy gap on the success of fracturehealing, J. Orthop. Res., 2005, Vol. 15(4), 577–584.
  • [24] CLAES L., HEIGELE C., AUGAT P., Effects of mechanical factors on the fracture healing process, Clinical Orthopaedics and Related Research, 1998, (355 Suppl.), 132–147.
  • [25] CLAES L., WILKE H.-J., AUGAT P., RÜBENACKER S., MARGEVICIUS K.J., Effect of dynamization on gap healing of diaphyseal fractures under external fixation, Clin. Biomech., 1995, Vol. 10(5), 227–234.
  • [26] WOLF S., JANOUSEK A., CLAES L., The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation, Clin. Biomech., 1998, Vol. 13(4–5), 359–364.
  • [27] GOODSHIP A, KENWRIGHT J., The influence of induced micromovement upon the healing of experimental tibial fractures, J. Bone Joint. Surg., 1985, Vol. 67(4), 650–655.
  • [28] BOTTLANG M., DOORNINK J., LUJAN T.J., FITZPATRICK D.C., MARSH J.L., AUGAT P., VON RECHENBERG B., LESSER M., MADEY S.M., Effects of construct stiffness on healing of fractures stabilized with locking plates, J. Bone Joint. Surg. Am., 2010, Vol. 92 (Suppl. 2), 12–22.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b758165b-7575-42f6-b7d2-9e6e92773fe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.