Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article aims (1) to evaluate material flows in the manufacturing process reflecting the level of circular manufacturing of European Union countries and (2) to estimate the relationship between the level of circular manufacturing and the volume of e-waste put on the market, illustrating the implementation effect of Industry 5.0 technologies. A systematic country classification was created according to development conditions for environmentally sustainable enterprises and trends in e-waste volumes. Multidimensional data analysis and the linear ordering method were used to achieve the research objectives. The dynamics of changes in the identified variables were analysed using dynamics indexes and the average annual rate of change. Relationships were estimated using Pearson’s linear correlation coefficient. The main research result is the estimated synthetic development measure illustrating the level of circular manufacturing in the context of material flows. Significant differences were observed between the synthetic development measure values representing the level of circular manufacturing in European Union countries. This means countries’ circular manufacturing levels are significantly higher than others. Moreover, the values of correlation coefficients were estimated between the level of circular manufacturing and the volume of e-waste put on the market and between the average annual rate of change of the synthetic development measure and the average annual rate of change of the e-waste volume. The coefficient values do not confirm a statistically significant relationship between the indicated variables. Most countries have average conditions for developing environmentally sustainable businesses, but at the same time, they show negative trends in the volume of e-waste generated.
Rocznik
Tom
Strony
114--133
Opis fizyczny
Bibliogr. 89 poz., tab.
Twórcy
autor
- Faculty of Management Czestochowa University of Technology Generala Jana Henryka Dabrowskiego Street 69 42-201 Czestochowa, Poland
autor
- Faculty of Mechanical and Safety Engineering Óbuda University Becsi Street 96/B H-1034 Budapest, Hungary
autor
- Faculty of Mechanical and Safety Engineering Óbuda University Becsi Street 96/B H-1034 Budapest, Hungary
Bibliografia
- Acerbi, F., Forterre, D. A., & Taisch, M. (2021a). Role of artificial intelligence in circular manufacturing: A systematic literature review. IFAC-PapersOnLine, 54(1), 367-372. doi: 10.1016/j.ifacol.2021.08.040
- Acerbi, F., Sassanelli, C., Terzi, S., & Taisch, M. (2021b). A systematic literature review on data and information required for circular manufacturing strategies adoption. Sustainability, 13(4), 2047. doi: 10.3390/su13042047
- Adlin, N., Lanz, M., & Lohtander, M. (2023). The Circular Economy Competence of the Manufacturing Sector — A Case Study. In K. Y. Kim, L. Monplaisir, & J. Rickli (Eds.), Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus. FAIM 2022. Lecture Notes in Mechanical Engineering: Springer, Cham. doi: 10.1007/978-3-031-18326-3_34
- Ahmad, M., & Satrovic, E. (2023). How do fiscal policy, technological innovation, and economic openness expedite environmental sustainability? Gondwana Research, 124, 143-164. doi: 10.1016/j.gr.2023.07.006
- Al-Salem, S. M., Leeke, G. A., El-Eskandarany, M. S., Van Haute, M., Constantinou, A., Dewil, R., & Baeyens, J. (2022). On the implementation of the circular economy route for E-waste management: A critical review and an analysis for the case of the state of Kuwait. Journal of Environmental Management, 323, 116181. doi: 10.1016/j.jenvman.2022.116181
- Andeobu, L., Wibowo, S., & Grandhi, S. (2022). Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review. Science of The Total Environment, 834, 155389. doi: 10.1016/j.scitotenv.2022.155389
- Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0: Mapping digital technologies for supply chain management-marketing integration. Business Process Management Journal, 25(2), 323-346. doi: 10.1108/BPMJ-04-2017-0088
- Arshad, A., Shahzad, F., Ur Rehman, I., & Sergi, B. S. (2023). A systematic literature review of blockchain technology and environmental sustainability: Status quo and future research. International Review of Economics & Finance, 88, 1602-1622. doi: 10.1016/j.iref.2023.07.044
- Atif, S. (2023). Analysing the alignment between circular economy and industry 4.0 nexus with industry 5.0 era: An integrative systematic literature review. Sustainable Development, 31(4), 2155-2175. doi: 10.1002/sd.2542
- Avom, D., Nkengfack, H., Fotio, H. K., & Totouom, A. (2020). ICT and environmental quality in SubSaharan Africa: Effects and transmission channels, Technological Forecasting and Social Change, 155. doi: 10.1016/j.techfore.2020.120028
- Bagwan, W. A. (2024). Electronic waste (E-waste) generation and management scenario of India, and ARIMA forecasting of e-waste processing capacity of Maharashtra state till 2030. Waste Management Bulletin, 1(4), 41-51. doi: 10.1016/j.wmb.2023.08.002
- Baheti, R., & Gill, H. (2011). Cyber-physical systems. In T. Samad, & A. M. Annaswamy (Eds.), The impact of control technology: Overview, success stories, and research challenges (pp. 161–166). New York: IEEE Control Systems Society.
- Barata, J., Cardoso, A., Haenisch, J., & Chaure, M. (2022). Interoperability standards for circular manufacturing in cyber-physical ecosystems: a survey. Procedia Computer Science, 207, 3320-3329. doi: 10.1016/j.procs.2022.09.390
- Cagno, E., Neri, A., Negri, M., Bassani, C., & Lampertico, T. (2021). The Role of Digital Technologies in Operationalizing the Circular Economy Transition: A Systematic Literature Review. Applied Sciences, 11(8), 3328. doi: 10.3390/app11083328
- Calabrese, A., Costa, R., Tiburzi, L., & Brem, A. (2023). Merging two revolutions: A human-artificial intel- ligence method to study how sustainability and Industry 4.0 are intertwined. Technological Forecasting and Social Change, 188, 122265. doi: 10.1016/j.techfore.2022.122265
- Charfeddine, L., & Umlai, M. (2023). ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022. Renewable and Sustainable Energy Reviews, 184, 113482. doi: 10.1016/j.rser.2023.113482
- Ciccullo, F., Fabbri, M., Abdelkafi, N., & Pero, M. (2022). Exploring the potential of business models for sustainability and big data for food waste reduction. Journal of Cleaner Production, 340, 130673. doi: 10.1016/j.jclepro.2022.130673
- Circular economy - material flows. (2022). Retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Circular_economy_-_material_flows
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: on a monitoring framework for the circular economy. (2018). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/ HTML/?uri=CELEX:52018DC0029
- Dan, M. C., Ciortea, A., & Mayer, S. (2023). The refashion circular design strategy – Changing the way we design and manufacture clothes. Design Studies, 88, 101205. doi: 10.1016/j.destud.2023.101205
- De Giovanni, P. (2023). Sustainability of the Metaverse: A Transition to Industry 5.0. Sustainability, 15(7), 6079. doi: 10.3390/su15076079
- Dixit, R., Kumar, S., & Pandey,G. (2023). Biological approaches for E-waste management: A green-go to boost circular economy. Chemosphere, 336, 139177. doi: 10.1016/j.chemosphere.2023.139177
- Dwivedi, A., Agrawal, D., Jha, A., & Mathiyazhagan, K. (2023). Studying the interactions among Industry 5.0 and circular supply chain: Towards attaining sustainable development. Computers & Industrial Engineering, 176, 108927. doi: 10.1016/j.cie.2022.108927
- Edirisinghe, L. G. L. M., de Alwis, A. A. P., Prakash, S., Wijayasundara, M., & Arosha Hemali, N. A. (2023). A volume-based analysis method to determine the economic value of mixed industrial waste. Cleaner Environmental Systems, 11, 100142. doi: 10.1016/j.cesys.2023.100142
- Ejsmont, K., Gladysz, B., & Kluczek, A. (2020). Impact of Industry 4.0 on Sustainability – Bibliometric Literature Review. Sustainability, 12, 5650. doi: 10.3390/su12145650
- European Commission, & Müller, J. (2020). Enabling Technologies for Industry 5.0 – Results of a workshop with Europe’s technology leaders, Publications Office. doi: 10.2777/082634
- European Commission. (2020). A new Circular Economy Action Plan, For a cleaner and more competitive Europe, COM(2020) 98 final. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583 933814386&uri=COM:2020:98:FIN
- European Commission. (2021a). Industry 5.0. Towards a sustainable, human-centric and resilient European industry. Policy Brief 2021.
- European Commission. (2021b). Industry 5.0, a transformative vision for Europe Governing systemic transformations towards a sustainable industry. doi: 10.2777/17322
- Eurostat Database. Retrieved from https://ec.europa.eu/eurostat
- Formentini, M., & Taticchi, P. (2016). Corporate sustainability approaches and governance mechanisms in sustainable supply chain management. Journal of Cleaner Production, 112, 1920-1933. doi: 10.1016/j.jclepro.2014.12.072
- Fraga-Lamas, P., Lopes, S. I., & Fernández-Caramés, T. M. (2021). Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors, 21, 5745. doi: 10.3390/s21175745
- García, S. G., & García, M. G. (2019). Industry 4.0 implications in production and maintenance management: An overview. Procedia Manufacturing, 41, 415-422. doi: 10.1016/j.promfg.2019.09.027
- Ghimouz, C., Kenné, J. P., & Hof, L. A. (2023). On sustainable design and manufacturing for the footwear industry – Towards circular manufacturing. Materials & Design, 233, 112224. doi: 10.1016/j.matdes.2023.112224
- Ghobakhloo, M., Iranmanesh, M., Foroughi, B., Tirkolaee, E. B., Asadi, S., & Amran, A. (2023). Industry 5.0 implications for inclusive sustainable manufacturing: An evidence-knowledge-based strategic roadmap. Journal of Cleaner Production, 417, 138023. doi: 10.1016/j.jclepro.2023.138023
- Ghobakhloo, M., Iranmanesh, M., Mubarak, M. F., Mubarik, M., Rejeb, A., & Nilashi, M. (2022). Identifying industry 5.0 contributions to sustainable development: A strategy roadmap for delivering sustainability values. Sustainable Production and Consumption, 33, 716-737. doi: 10.1016/j.spc.2022.08.003
- Gupta, H., Kumar, A., & Wasan, P. (2021). Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. Journal of Cleaner Production, 295, 126253. doi: 10.1016/j.jclepro.2021.126253
- Huang, S., Wang, B., Li, X., Zheng, P., Mourtzis, D., & Wang, L. (2022). Industry 5.0 and Society 5.0 – comparison, complementation and co-evolution. Journal of Manufacturing Systems, 64, 424-428. doi: 10.1016/j.jmsy.2022.07.010
- Islam, M. S., Rahaman, S. H., Ur Rehman, A., & Khan, I. (2023). ICT’s impact on CO2 emissions in GCC region: The relevance of energy use and financial development. Energy Strategy Reviews, 49, 101147. doi: 10.1016/j.esr.2023.101147
- Jafari, N., Azarian, M., & Yu, H. (2022). Moving from Industry 4.0 to Industry 5.0: What Are the Implications for Smart Logistics? Logistics, 6, 26.
- Kemendi, A., Michelberger, P., & Mesjasz-Lech, A. (2022). Industry 4.0 and 5.0 – organizational and competency challenges of enterprises. Polish Journal of Management Studies, 26(2), 209-232. doi: 10.17512/pjms.2022.26.2.13
- Krings, B., Kupper, J., Schmid, M., & Thiel, A. (2016). Western Europe’s consumer goods industry in 2030. Retrieved from https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/westerneuropes-consumer-goods-industry-in-2030
- Kulczycka, J. (2018). Wskaźniki gospodarki o obiegu zamkniętym dla Unii Europejskiej i Polski [Circular Economy Idicators for the European Union and Po- land]. Gospodarka w Praktyce i Teorii, 53(4), 81-93. https://doi:10.18778/1429-3730.53.05
- Kumar, V., Sezersan, I., Garza-Reyes, J. A., Gonzalez, E. D., & Al-Shboul, M. D. A. (2019). Circular economy in the manufacturing sector: benefits, opportunities and barriers. Management Decision, 57(4), 1067- 1086. doi: 10.1108/MD-09-2018-1070
- Laskurain-Iturbe, I., Arana-Landín, G., Landeta-Manzano, B., & Uriarte-Gallastegi, N. (2021). Exploring the influence of industry 4.0 technologies on the circular economy. Journal of Cleaner Production, 321, 128944. doi: 10.1016/j.jclepro.2021.128944
- Le, T. T., Ferraris, A., & Dhar, B. K. (2023). The contribution of circular economy practices on the resilience of production systems: Eco-innovation and cleaner production’s mediation role for sustainable development. Journal of Cleaner Production, 424, 138806. doi: 10.1016/j.jclepro.2023.138806
- Li, C., Chen, Y., & Shang, Y. (2022). A review of industrial big data for decision making in intelligent manufacturing. Engineering Science and Technology an International Journal, 29, 101021. doi: 10.1016/j.jestch.2021.06.001
- Liu, Y., Farooque, M., Lee, C.-H., Gong, Y., & Zhang, A. (2023). Antecedents of circular manufacturing and its effect on environmental and financial performance: A practice-based view. International Journal of Production Economics, 260, 108866. doi: 10.1016/j.ijpe.2023.108866
- Martikkala, A., Mayanti, B., Helo, P., Lobov, A., & Ituarte, I. F. (2023). Smart textile waste collection system – Dynamic route optimization with IoT. Journal of Environmental Management, 335, 117548. doi: 10.1016/j.jenvman.2023.117548
- Masoomi, B., Sahebi, I. G., Ghobakhloo, M., & Mosayebi, A. (2023). Do industry 5.0 advantages address the sustainable development challenges of the renewable energy supply chain? Sustainable Production and Consumption, 43, 94-112. doi: 10.1016/j.spc.2023.10.018
- Mauss, N.-A., Bühnera, D., & Fottner, J. (2023). Applicability and Limitations of Change Management for Circular Economy in Manufacturing Companies. Procedia Computer Science, 217, 998-1007. doi: 10.1016/j.procs.2022.12.298
- Mora-Contreras, R., Ormazabal, M., Hernández-Salazar, G., Torres-Guevara, L. E., Mejia-Villa, A., PrietoSandoval, V., & Carrillo-Hermosilla, J. (2023). Do environmental and cleaner production practices lead to circular and sustainability performance? Evidence from Colombian manufacturing firms. Sustainable Production and Consumption, 40, 77-88. doi: 10.1016/j.spc.2023.06.004
- Morea, D., Fortunati, S., & Martiniello, L. (2021). Circular economy and corporate social responsibility: Towards an integrated strategic approach in the multinational cosmetics industry. Journal of Cleaner Production, 315, 128232. doi: 10.1016/j.jclepro.2021.128232
- Neri, A., Negri, M., Cagno, E., Franzò, S., Kumar, V., Lampertico, T., & Bassani, C. A. (2023). The role of digital technologies in supporting the implementation of circular economy practices by industrial small and medium enterprises. doi: 10.1002/bse.3388
- Ogiemwonyi, O., Alam, M. N., Alshareef, R., Alsolamy, M., Azizan, N. A., & Mat, N. (2023). Environmental factors affecting green purchase behaviors of the consumers: Mediating role of environmental attitude. Cleaner Environmental Systems, 10, 100130. doi: 10.1016/j.cesys.2023.100130
- Paraschos, P. D., Xanthopoulos, A. S., Koulinas, G. K., & Koulouriotis, D. E. (2022). Machine learning integrated design and operation management for resilient circular manufacturing systems. Computers & Industrial Engineering, 167, 107971. doi: 10.1016/j.cie.2022.107971
- Paschek, D., Luminosu, C. T., & Ocakci, E. (2022). Industry 5.0 Challenges and Perspectives for Manufacturing Systems in the Society 5.0. In A. Draghici, & L. Ivascu (Eds.), Sustainability and Innovation in Manufacturing Enterprises. Advances in Sustainability Science and Technology (pp. 17–63). Singapore: Springer. doi: 10.1007/978-981-16-7365-8_2
- Piccarozzi, M., Silvestri, C., Aquilani, B., & Silvestri, L. (2023). Is this a new story of the ‘Two Giants’? A systematic literature review of the relationship between industry 4.0, sustainability and its pillars. Technological Forecasting and Social Change, 177, 121511. doi: 10.1016/j.techfore.2022.121511
- Psarommatis, F., May, G., & Azamfirei, V. (2023). Envisioning maintenance 5.0: Insights from a systematic literature review of Industry 4.0 and a proposed framework. Journal of Manufacturing Systems, 68, 376-399. doi: 10.1016/j.jmsy.2023.04.009
- Ramya, P., Ramya, V., & Babu Rao, M. (2023). E-waste management using hybrid optimization-enabled deep learning in IoT-cloud platform. Advances in Engineering Software, 176, 103353. doi: 10.1016/j.advengsoft.2022.103353
- Ren, Y., Li, R., Wu, K.-J., & Tseng, M.-L. (2023). Discovering the systematic interlinkages among the circular economy, supply chain, industry 4.0, and technology transfer: A bibliometric analysis, Cleaner and Responsible Consumption, 9, 100123. doi: 10.1016/j.clrc.2023.100123
- Roci, M., Salehi, N., Amir, S., Shoaib-ul-Hasan, S., Asif, F. M. A., Mihelič, A., & Rashid, A. (2022). Towards circular manufacturing systems implementation: A complex adaptive systems perspective using modelling and simulation as a quantitative analysis tool. Sustainable Production and Consumption, 31, 97-112. doi: 10.1016/j.spc.2022.01.033
- Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 9(1), 54-89.
- Said, Z., Sharma, P., Nhuong, Q. T. B., Bora, B. J., Lichtfouse, E., Khalid, H. M., Luque, R., Nguyen, X. P., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 377, 128952. doi: 10.1016/j.biortech.2023.128952
- Sami, A., Manzoor, U., Irfan, A., & Sarwar, F. (2023). Characterizing Circular Supply Chain Practices in Industry 5.0 With Respect to Sustainable Manufacturing Operations. Journal of Management and Research, 10(1), 84-105. doi: 10.29145/jmr.101.04
- Savini, F. (2023). Futures of the social metabolism: Degrowth, circular economy and the value of waste. Futures, 150, 103180. doi: 10.1016/j.futures.2023.103180
- Seker, S. (2022). IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment. Technology in Society, 71, 102100. doi: 10.1016/j.techsoc.2022.102100
- Shahabuddin, M., Uddin, M. N., Chowdhury, J. I., Ahmed, S. F., Uddin, M. N., Mofijur, M., & Uddin, M. A. (2023). A review of the recent development, challenges, and opportunities of electronic waste (ewaste). International journal of Environmental Science and Technology, 20, 4513-4520. doi: 10.1007/s13762-022-04274-w
- Shayganmehr, M., Kumar, A., Garza-Reyes, J. A., & Moktadir, M. A. (2021). Industry 4.0 enablers for a cleaner production and circular economy within the context of business ethics: A study in a developing country. Journal of Cleaner Production, 281, 125280. doi: 10.1016/j.jclepro.2020.125280
- Skare, M., Gavurova, B., & Kovac, V. (2023). Investigation of selected key indicators of circular economy for implementation processes in sectorial dimensions. Journal of Innovation & Knowledge, 8(4), 100421. doi: 10.1016/j.jik.2023.100421
- Song, B., Yeo, Z., Jonathan, L. S. C., Jiewei, D. K., Kurle, D., Cerdas, F., & Herrmann, C. (2015). A Big Data Analytics Approach to Develop Industrial Symbioses in Large Cities. Procedia CIRP, 29, 450-455. doi: 10.1016/j.procir.2015.01.066
- Song, B., Yeo, Z., Kohls, P., & Herrmann, C. (2017). Industrial Symbiosis: Exploring Big-data Approach for Waste Stream Discovery. Procedia CIRP, 61, 353-358. doi: 10.1016/j.procir.2016.11.245
- Sun, X., & Wang, X. (2022). Modeling and Analyzing the Impact of the Internet of Things-Based Industry 4.0 on Circular Economy Practices for Sustainable Development: Evidence From the Food Processing Industry of China. Frontiers in Psychology, 13, 866361. doi: 10.3389/fpsyg.2022.866361
- Syu, F.-S., Vasudevan, A., Despeisse, M., Chari, A., Bekar, E. T., Gonçalves, M. M., & Estrela, M. A. (2022). Usability and Usefulness of Circularity Indicators for Manufacturing Performance Management. Procedia CIRP, 105, 835-840. doi: 10.1016/j.procir.2022.02.138
- Tavares, T. M., Ganga, G. M. D., Filho, M. G., & Rodrigues, V. P. (2023). The benefits and barriers of additive manufacturing for circular economy: A framework proposal. Sustainable Production and Consumption, 37, 369-388. doi: 10.1016/j.spc.2023.03.006
- Tavares-Lehmann, A. T., & Varum, C. (2021). Industry 4.0 and Sustainability: A Bibliometric Literature Review. Sustainability, 13, 3493. doi: 10.3390/su13063493
- Trstenjak, M., Hegedić, M., Tošanović, N., Opetuk, T., Đukić, G., & Cajner, H. (2023). Key Enablers of Industry 5.0 – Transition from 4.0 to the New Digital and Sustainable System. In H.Kohl, G. Seliger, & F. Dietrich (Eds.), Manufacturing Driving Circular Economy. GCSM 2022. Lecture Notes in Mechanical Engineering. Cham: Springer. doi: 10.1007/978-3-031-28839-5_69
- Turner, C., Oyekan, J., Garn, W., Duggan, C., & Abdou, K. (2022). Industry 5.0 and the Circular Economy: Utilizing LCA with Intelligent Products. Sustainability, 14, 14847. doi: 10.3390/su142214847
- Up Skill Project. (2023). Up-skilling for industry 5.0 rollout from Industry 4.0 to Industry 5.0. Retrieved from https://www.upskill-horizon.eu/
- Valera, E. H., Cremades, R., van Leeuwen, E., & van Timmeren, A. (2023). Additive manufacturing in cities: Closing circular resource loops. Circular Economy, 2(3), 10049. doi: 10.1016/j.cec.2023.100049
- Varriale, V., Cammarano, A., Michelino, F., & Caputo, M. (2023). Industry 5.0 and Triple Bottom Line Approach in Supply Chain Management: The Stateof-the-Art. Sustainability, 15(7), 5712. doi: 10.3390/su15075712
- Vishwakarma, S., Kumar, V., Arya, S., Tembhare, M., Rahul, Dutta, D., & Kumar, S. (2022). E-waste in Information and Communication Technology Sector: Existing scenario, management schemes and initiative. Environmental Technology & Innovation, 27, 102797. doi: 10.1016/j.eti.2022.102797
- Voulgaridis, K., Lagkas, T., Angelopoulos, C. M., & Nikoletseas, S. E. (2022). IoT and digital circular economy: Principles, applications, and challenges. Computer Networks, 219, 109456. doi: 10.1016/j.comnet.2022.109456
- Wu, D., & Pi, Y. (2023). Digital technologies and product-service systems: A synergistic approach for manufacturing firms under a circular economy. Journal of Digital Economy, 2, 37-49. doi: 10.1016/j.jdec.2023.04.001
- Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0 – Inception, conception and perception. Journal of Manufacturing Systems, 61, 530-535. doi: 10.1016/j.jmsy.2021.10.006
- Yang, F., & Gu, S. (2021). Industry 4.0, a revolution that requires technology and national strategies. Complex & Intelligent Systems, 7, 1311-1325. doi: 10.1007/s40747-020-00267-9
- Yavuz, O., Uner, M. M., Okumus, F., & Karatepe, O. M. (2023). Industry 4.0 technologies, sustainable operations practices and their impacts on sustainable performance. Journal of Cleaner Production, 387, 135951. doi: 10.1016/j.jclepro.2023.135951
- Zhong, R., Xu, X., Klotz, E., & Newman, S. T. (2017) Intelligent manufacturing in the context of Industry 4.0: a review. Engineering, 3, 616-630.
- Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges. In 12th International Conference on fuzzy systems and knowledge discovery (pp. 2147–2152). IEEE.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7552174-27e0-438c-bcd2-2600f113ad4e