Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We give a criterion ensuring that the elementary class of a modular Banach space E (that is, the class of Banach spaces, some ultrapower of which is linearly isometric to an ultrapower of E) consists of all direct sums E⊕mH, where H is an arbitrary Hilbert space and ⊕m denotes the modular direct sum. Also, we give several families of examples in the class of Nakano direct sums of finite dimensional normed spaces that satisfy this criterion. This yields many new examples of uncountably categorical Banach spaces, in the model theory of Banach space structures.
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--144
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- University of Illinois at Urbana Champaign (UIUC), Urbana, Illinois 61801, United States
autor
- Institut de Mathématiques de Jussieu-Paris Rive Gauche CNRS/UPMC (University Paris-06) Univ.Paris-Diderot, 4 place Jussieu, F-75252 Paris Cedex 05, France
Bibliografia
- [1] I. Ben Yaacov, Uncountable dense categoricity in cats, J. Symb. Logic 70 (2005), no. 3, 829-860, DOI 10.2178/jsl/l 122038916.
- [2] I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov, Model theory for metric structures, Model Theory with Applications to Algebra and Analysis (Z. Chatzidakis, D. Macpherson, A. Pilllay, and A. Wilkie, eds.), Vol. 2, Cambridge Univ. Press, 2008, 315-427, DOI 10.1017/CB09780511735219.011.
- [3] K. Ball, E. A. Carlen, and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463-482, DOI 10.1007/BF01231769.
- [4] S. Heinrich, Ultraproducts in Banach Spaces Theory, I. Reine Angew. Math. 313 (1980), 72-104, DOI 10.1515/crll.l980.313.72.
- [5] C. W. Henson and J. Iovino, Ultraproducts in Analysis, Analysis and Logic (C. Finet and C. Michaux, eds.), Cambridge Univ. Press, 2003,1-113.
- [6] J. E. Jamison, A. Kamińska, and P.-K. Lin, Isometrics of Musielak-Orlicz spaces 11, Studia Math. 104 (1993), 75-89.
- [7] P. Jordan and J. von Neumann, On Inner Products in Linear Metric Spaces, Ann. of Math. 36 (1935), no. 3, 719-723, DOI 10.2307/1968653.
- [8] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer-Verlag 1979.
- [9] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
- [10] G. Pisier, Some residts on Banach spaces without local unconditional structure, Compositio Math. 37 (1978), no. 1, 3-19.
- [11] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge Univ. Press 1989. DOI 10.1017/CB09780511662454.
- [12] S. Shelah and A. Usvyatsov, Model theoretic stability and categoricity for complete metric spaces, Israel J. Math. 182 (2011), 157-198, DOI 10.1007/sll856-011-0028-2.
- [13] S. Shelah and A. Usvyatsov, Minimal types in stable Banach spaces (2014), preprint, available at https: //arxiv.org/abs/1402.6513vl.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b754eaad-b57e-474f-b968-b93a553a5e18