PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Cu and Ni Nano-Fluids Synthesized by Pulsed Wire Evaporation Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, Cu and Ni nanofluids were synthesized using the pulsed wire evaporation (PWE) method in the different aqueous medias, namely (ethanol and ethylene glycol), and the effects of the aqueous media on the dispersion state, stability, and particle size of nanoparticles were studied. The size and morphology of synthesized nano-particles were investigated by transmission electron microscopy (TEM). Also, the dispersion stability of the nanofluids was evaluated by turbiscan analysis. The TEM results showed that the nano-particles were spherical in shape, and the average particle size was below 100 nm. The average particle size of the Cu nano-particles was smaller than that of Ni, which was attributed to a difference in the specific sublimation energy of the elements. Moreover, ethylene glycol (EG) exhibited higher suspension stability than ethanol. Finally, the dispersion stability of Cu@EG displayed the highest value due to lower particle size and greater viscosity.
Twórcy
autor
  • Metals Development, AMES Laboratory, Iowa State University, Ames, IA 50011, USA
autor
  • Department of Physics, Faculty of Art and Science, Gaziosmanpasa University, Tasliciftlik Campus, Tokat 60240, Turkey
autor
  • Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 330-717, Republic of Korea
autor
  • Nano Technology, 290-19, Daehwa, Daedeok, Daejeon Metropolitan City, 306-801, Republic of Korea
autor
  • Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 330-717, Republic of Korea
autor
  • Division of Advanced Materials Engineering and Institute for Rare Metals, Kongju National University, 330-717, Republic of Korea
Bibliografia
  • [1] W. Yu, H. Xie, J. Nanomater., 435873 (2012).
  • [2] X. Q. Wang, A. S. Mujumdar, Int. J. Therm. Sci. 46, 1-19 (2007).
  • [3] V. Trisaksri, S. Wongwises, Renew. Sust. Energ. Rev. 11, 521-523 (2007).
  • [4] Y. Li, J. Zhou, S. Tung, E. Schneider, X. Dhrnhqi, Powder Technol. 196, 89-101 (2009).
  • [5] B. Munkhbayar, M.R. Tanshen, J. Jeoun, H. Chung, H. Jeong, Ceram. Int. 39, 6415-6425 (2013).
  • [6] F. Yılmaz, D.J. Lee, J.W. Song, H.S. Hong, H.T. Son, J.S. Yoon, S.J. Hong, Powder Technol. 235, 1047-1052 (2013).
  • [7] S. Ishihara, H. Suematsu, T. Nakayama, T. Suzuki, K. Niihara, Ceram. Int. 38, 4477-4484 (2012).
  • [8] T. K. Jung, D. W. Joh, H.S. Lee, M.H. Lee, Procedia Eng. 10, 728-733 (2011).
  • [9] R. S. Reddy, M. Kamaraj, U. K. Mudali, S. R. Chakravarthy, R. Sarathi, Ceram. Int. 38, 5507-5512 (2012).
  • [10] Z. Haddad, C. Abid, H. F. Oztop, A. Mataoui, Int. J. Therm. Sci. 76, 168-189 (2014).
  • [11] J. W. Song, D. J. Lee, F. Yilmaz, S. J. Hong, J. Nanomater. 2012, 792429 (2012).
  • [12] L. H. Bac, W. H. Gu, J. C. Kim, B. K. Kim, J. S. Kim, J. Kor. Powd. Met. Inst. 19, 55-59 (2012).
  • [13] E. J. Park, S. W. Lee, I. C. Bang, H. W. Park, Nanoscale Res. Lett. 6, 1-10 (2011).
  • [14] R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, Mater. Charact. 58, 148-155 (2007).
  • [15] R. G. Larson, The structure and rheology of complex fluids, Oxford University Press, New York 1999.
  • [16] H. A. Barnes, A handbook of elementary rheology, University of Wales, Institute of Non-Newtonian Fluid Mechanics 2000.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b751502a-6a0f-449c-8ea4-d34b1dfbd465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.