PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Metals Chelating Ability and Antioxidant Activity of Phragmites australis Stems Extracts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the ability of hexane (HSE), chloroform (CSE), ethyl acetate (EASE) and methanolic (MSE) stems extracts from Phragmites australis or EDTA (as standard) to chelate iron using ferrozine method or zinc and copper using the murexide method is carried out in vitro. When the increased volumes of the HSE studied were taken from a stock solution of a fixed concentration 1 mg/ml at 25–175 μl for the iron and zinc chelating assay, 1–7 mg/ml for the copper chelating assay gave a significant (p≤ 0.01) activity. The obtained results showed that the HSE have the highest capacity to chelate ferrous ions below the EDTA (standard chelator) with absorbance arrive to the lesser extent 0.24±0.005, 0.04±0.013 which expresses 86% and 97% (compared to the control) of inhibition, respectively. For the murexide chelation, the results obtained also showed that the HSE and EDTA have a good (p≤ 0.01) chelating dose dependent effect towards zinc and copper ions with increased absorbance 0.45±0.02 and 0.42±0.02 with 54% and 56% of inhibition, respectively, for the zinc chelation and 0.66±0.03, 0.13±0.005 represent 44% and 88% for copper chelation. In contrast to the antioxidant capacity, the extract of hexane, ethyl acetate, chloroform and methanol from leaves, stems and roots of the Phragmites australis plant have a very low scavenger effect to the radical DPPH where the maximum inhibition is approximately 13.79%, obtained with the maximum volume. Finally, the HPLC analysis of effective extract (HSE) confirmed the presence of oxalic, citric, malic, succinic, fumaric, formic, acetic, propionic and butyric or iso butyric acid.
Słowa kluczowe
Rocznik
Strony
116--123
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of biochemistry, Faculty of nature sciences and life, Ferhat Abbas University, Setif 1, Algeria
  • Department of Biology and Plant Ecology, Faculty of nature sciences and life, Ferhat Abbas University, Setif 1, Algeria
  • Department of biochemistry, Faculty of nature sciences and life, Ferhat Abbas University, Setif 1, Algeria
Bibliografia
  • 1. Balcerek M., Rąk I., Majtkowska G., Majtkowski W. 2009. Antioxidant activity and total phenolic compounds in extracts of selected grasses (Poaceae). Herba polonica journal, 55 (3), 215–221.
  • 2. Boo HO., Shin JH., Shin JS., Choung ES., Bang MA., Choi KM., Song WS. 2012. Assessment on Antioxidant Potential and Enzyme Activity of Some Economic Resource Plants. Korean J Plant Res, 25 (3), 349–356.
  • 3. Bougatef A., Hajji M., Balti R., Lassoued I., Triki-Ellouz Y., Nasri M. 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chem, 114, 1198–1205.
  • 4. Gulzar II., Aveen FJ., Banar MI. 2013. Evaluation of antioxidant activity, phenolic, flavonoid and ascorbic acid contents of three edible plants from Erbil/ Kurdistan. Tikrit Journal of Pure Science, 3, 46–51.
  • 5. Harmens BH., Koevoets PLM., Verkleij JAC., Ernst WO. 1994. The role of low molecular weight organic acids in the mechanism of increased zinc tolerance in Silene vulgaris (Moench) Garcke. New Phytol, 126, 615–621.
  • 6. Jiang X., Wang, C. 2007. Cadmium distribution and its effects on molybdate-containinghydroxylases in Phragmites australis. Aquatic Botany, 86, 353–360.
  • 7. Kahkonen MP., Hopia AI., Vuorela HJ., Rauha JP., Pihlaja K., Kujala TS., Heinonen M. 1999. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J Agric Food Chem, 47, 3954–3962.
  • 8. Kleche M., Berrebbah H., Grara N., Bensoltane S., Djekoun M., Djebar MR. 2013. Phytoremediation using Phragmites australis roots of polluted water with metallic trace elements (MTE). Annals of Biological Research, 4 (3), 130–133.
  • 9. Niencheski LFH., Baumgarten MG. 2000. Distribution of particulate trace metal in the southern part of the Patos Lagoon estuary. Aquatic Ecosystem and Management, 3, 515–520.
  • 10. Que F., Mao L., Pan X. 2006. Antioxidant activities of Wve Chinese rice wines and the involvement of phenolic compounds. Food Res Intern, 39, 581–587.
  • 11. Rocha ACS., Almeida CMR., Basto MCP., Vasconcelos MTSD. 2014. Antioxidant response of Phragmites australis to Cu and Cd contamination. Ecotoxicology and Environmental Safety, 109, 152–160.
  • 12. Sa LRVD., Oliveira MALD., Cammarota MC., Matos A., Ferreira-Leitao VS. 2011. Simultaneous analysis of carbohydrates and volatile fatty acids by HPLC for monitoring fermentative biohydrogen production. International journal of hydrogen energy, 36, 15177-5186.
  • 13. Sanjeevkumar UMKCB., Nayaka HB., Londonkar RL. 2014. Evaluation of in vitro anti-thrombolytic activity and cytotoxicity potential of typha angus tifolia l leaves extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 81–85.
  • 14. Sellal A., Belattar R., Senator A. 2012. Antioxidant and Anti-Infl ammatory Activities of Ginger Aqueous and Ethanolic Extracts. Pharmacognosy communications, 2 (4), 3–10.
  • 15. Sellal A., Melloul D., Benghedfa N., Belattar R., Bouzidi A. 2016. Iron, Zinc and Copper Chelation Activity of Phragmites australis leaves extracts. Adevances in environmental biology, 10 (1), 1–5.
  • 16. Shivhare Y. 2011. Medicinal Plants as Source of Antiemetic Agents: A Review. Asian J Pharm Tech, 1 (2), 25–27.
  • 17. Ullah A., Heng S., Munis MFH., Fahad S., Yang X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117, 28–40.
  • 18. Watak S., Patil, SS. 2012. Formation and Evaluation of Herbomineral Complex. Asian J. Pharm. Ana, 2, 52–67.
  • 19. Zhu L., Zhang D., Yuan C., Ding X., Shang Y., Jiang Y., Zhu G. 2017. Anti-Inflammatory and antiviral effects of water-soluble crude extract from Phragmites australis in vitro. Pakistan Journal of Pharmaceutical Sciences, 30 (4), 1357–1362.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7501ad4-4bb1-4c11-a2d2-9c2adccc125f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.