Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Dynamic condition analysis of a long shaft drive systems
Języki publikacji
Abstrakty
Układy napędowe z długim wałem transmisyjnym będące przedmiotem niniejszej analizy realizują określone zadania w procesie technologicznym. Artykuł ma na celu dokonanie analizy stanów dynamicznych układów napędowych z długim wałem na podstawie badań eksperymentalnych dla wałów o różnych parametrach.
Drive systems with a long transmission shaft, which are the subject of this analysis, perform specific tasks in the technological process. The aim of the article is to analyze the dynamic states of drive systems with a long shaft based on experimental tests for shafts with various parameters.
Wydawca
Czasopismo
Rocznik
Tom
Strony
148--151
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Uniwersytet Radomski, Katedra Napędu Elektrycznego i Elektroniki Przemysłowej, ul. Malczewskiego 29, 26-600 Radom
autor
- Politechnika Częstochowska, Katedra Elektroenergetyki, Aleja Armii Krajowej 17, 42-218 Częstochowa
autor
- Uniwersytet Radomski, Katedra Napędu Elektrycznego i Elektroniki Przemysłowej, ul. Malczewskiego 29, 26-600 Radom
Bibliografia
- [1] Popenda A., Szafraniec A., Chaban A., Dynamics of Electromechanical Systems Containing Long Elastic Couplings and Safety of Their Operation, Energies, (2021), 14, 7882
- [2] Popenda A., Simple mathematical models of transmission shafts and gear trains. Electrical and mechanical circuits, Przegląd Elektrotechniczny, 92 (2016), nr 12, 137-140
- [3] Peng R., Zhang X., Shi P., Vertical–horizontal coupling vibration of hot rolling mill rolls under multi-piecewise nonlinear constraints, Metals, (2021), 11, 170
- [4] Fan X.B., Zang Y., Jin K., Rolling process and its influence analysis on hot continuous rolling mill vibration, Appl. Phys. A, (2016), 122, 1–8
- [5] Ramírez G.A., Valenzuela M.A., Pittman S., Lorenz R.D., Modeling and Evaluation of Paper Machine Coater Sections Part 1 1-Coater Section and Tension Setpoints, IEEE Trans. Ind. Appl, (2019), 55, 2144–2154
- [6] Song M.-H., Pham, X.D., Vuong, Q.D. Torsional vibration stress and fatigue strength analysis of marine propulsion shafting system based on engine operation patterns. J. Mar. Sci. Eng. (2020), 8, 613
- [7] Zhang M., Zhang G., Liu Z., Research on large ship propulsion shafting alignment multi-nonlinear-elastic support model, J. Ship Mech, (2016), 1, 176–183
- [8] Jee J., Kim C., Kim Y., Design improvement of a viscous-spring damper for controlling torsional vibration in a propulsion shafting system with an engine acceleration problem. J. Mar. Sci. Eng. (2020), 8, 428
- [9] Chaban A., Hamilton - Ostrogradski Principle in Electromechanical Systems, Soroki, Lviv, Ukraine, (2015), 488
- [10] Czaban A., Lis M., Model matematyczny napędu prądu stałego na podstawie podejść wariacyjnych, Przegląd Elektrotechniczny (2012), 12, 167–170
- [11] Szabat K., Orłowska-Kowalska T., Application of the Kalman filters to the high-performance drive system with elastic coupling, IEEE Trans. on Ind. Electron, 59 (2012), 11, 4226–4235
- [12] Serkies P., Szabat K., Application of the MPC controller to the Position Control of the Two-Mass Drive System, IEEE Trans. on Ind. Electron, 60 (2013), 9, 3679-3688
- [13] Chaban A., Łukasik Z., Popenda A., Szafraniec A., Mathematical Modelling of Transient Processes in an Asynchronous Drive with a Long Shaft Including Cardan Joints, Energies, (2021), 14, 5692
- [14] O'Sullivan T., Bingham C.C., Schofield N., High-performance control of dual-inertia servo-drive systems using low-cost integrated SAW torque transducers, IEEE Trans. on Ind. Electron, 53 (2006), 4, 1226–1237
- [15] Kabziński J., Mosiołek P., Integrated, Multi-Approach, Adaptive Control of Two-Mass Drive with Nonlinear Damping and Stiffness, Energies (2021), 14, 5475
- [16] Valenzuela M.A., Bentley J.M., Lorenz R.D., Evaluation of torsional oscillations in paper machine sections, IEEE Trans. on Ind. Electron, 41 (2005), 2, 493–501
- [17] Popenda A., Lis M., Nowak M., Blecharz K., Mathematical Modelling of Drive System with an Elastic Coupling Based on Formal Analogy between the Transmission Shaft and the Electric Transmission Line, Energies, vol. 1181, (2020), 13, 1-14
- [18] Kabziński J., Mosiołek, P., Adaptive, nonlinear state transformation-based control of motion in presence of hard constraints, Bull. Pol. Acad. Sci. Tech. Sci., (2020), 68, 963–971
- [19] Grządziela A., Modelling of propeller shaft dynamics at pulse load, Polish Maritime Research, vol.15, (2008), 52-58
- [20] Jinli X., Xingyi S., Bo P., Numerical Analysis and Demonstration Transmission Shaft Influence on Meshing Vibration in Driving and Driven Gears, Shock and Vibration, (2015), 365084, 10
- [21] Swanson D.C., Signal processing for intelligent sensor systems with MATLAB®, 2nd ed., CRC Press, (2017), 7-23
- [22] Łuczak D., “Mathematical model of multi-mass electric drive system with flexible connection, 19th Inter. Conference on Methods and Models in Automation and Robotics, Poland, IEEE, (2014), 290-295
- [23] Muyeen S. M., Mohd H. A., Takahashi R., Murata T., Tamura J., Tomaki Y., Sakahara A., Sasano E., Transient Stability Analysis of Wind Generator System with the Consideration of Multi-Mass Shaft Model, Int. Conf. on Power Electronics and Drive Systems, Publisher IEEE, (2005), 511-516
- [24] Saarakkala S., Hinkkanen M., Identification of Two-Mass Mechanical Systems Using Torque Excitation Design and Experimental Evaluation, IEEE Trans. Ind. Appl., (2015), 51, 4180–4189
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b74facb8-8a7e-43c5-ae38-193d947d1af3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.