Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Efficiency, reliability, and durability play a key role in modern drive systems in line with the Industry 4.0 paradigm and the sustainability trend. To ensure this, highly efficient motors and appropriate systems must be deployed to monitor their condition and diagnose faults during the operation. For these reasons, in recent years, research has been increasingly focused on developing new methods for fault diagnosis of permanent magnet synchronous motors (PMSMs). This paper proposes a novel hybrid method for the automatic detection and classification of PMSM stator winding faults based on combining the continuous wavelet transform (CWT) analysis of the negative sequence component of the stator phase currents with a convolutional neural network (CNN). CWT scalogram images are used as the inputs of the CNN-based interturn short circuits fault classifier model. Experimental tests were conducted to verify the effectiveness of the proposed approach under various motor operating conditions and at an incipient stage of fault propagation. In addition, the effects of the input image format, CNN structure, and training process parameters on model accuracy and classification effectiveness were investigated. The results of the experimental tests confirmed the high effectiveness of fault detection (99.4%) and classification (97.5%), as well as other important advantages of the developed method.
Rocznik
Tom
Strony
art. no. e150202
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] T. Peng, C. Ye, C. Yang, Z. Chen, K. Liang, and X. Fan, “A novel fault diagnosis method for early faults of PMSMs under multiple operating conditions”, ISA Trans., vol. 130, pp. 463–476, Nov. 2022, doi: 10.1016/j.isatra.2022.04.023.
- [2] X. Zhou, J. Sun, P. Cui, Y. Lu, M. Lu, and Y. Yu, “A Fast and Robust Open-Switch Fault Diagnosis Method for Variable-Speed PMSM System”, IEEE Trans Power Electron, vol. 36, no. 3, pp. 2598–2610, 2021, doi: 10.1109/TPEL.2020.3013628.
- [3] S. Huang, A. Aggarwal, E.G.Strangas, K. Li, F. Niu, and X. Huang, “Robust Stator Winding Fault Detection in PMSMs With Respect to Current Controller Bandwidth”, IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5032–5042, 2021, doi: 10.1109/TPEL.2020.3030036.
- [4] K.H.Baruti, C. Li, F. Erturk, and B. Akin, “Online Stator Inter-Turn Short Circuit Estimation and Fault Management in Permanent Magnet Motors”, IEEE Trans. Energy Convers., vol. 38, no. 2, pp. 1016–1027, 2023, doi: 10.1109/TEC.2022.3220544.
- [5] P. Pietrzak and M. Wolkiewicz, “Stator winding fault detection of permanent magnet synchronous motors based on the bispectrum analysis”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 7, no. 2, p. e140556, 2022, doi: 10.24425/bpasts.2022.140556.
- [6] L. Liu, K. Wang, L.L.Guo, and J. Li, “Analysis of Inter-Turn Short Circuit Faults in Dual Three-Phase PMSM for Electromechanical Actuator”, EEE Trans. Transp. Electrif., vol. 9, no. 3, pp. 4059–4070, Sep. 2023, doi: 10.1109/TTE.2023.3239632.
- [7] G. Niu, X. Dong, and Y. Chen, “Motor Fault Diagnostics Based on Current Signatures: A Review”, IEEE Trans. Instrum. Meas., vol. 72, pp. 1–19, 2023, doi: 10.1109/TIM.2023.3285999.
- [8] T. Orlowska-Kowalska et al., “Fault Diagnosis and Fault-Tolerant Control of PMSM Drives–State of the Art and Future Challenges”, IEEE Access, vol. 10, pp. 59979–60024, 2022, doi: 10.1109/ACCESS.2022.3180153.
- [9] Y. Chen, S. Liang, W. Li, H. Liang, and C. Wang, “Faults and Diagnosis Methods of Permanent Magnet Synchronous Motors: A Review”, Appl. Sci., vol. 9, no. 10, p.‘2116, 2019, doi: 10.3390/app9102116.
- [10] Z. Dogan and K. Tetik, “Diagnosis of Inter-Turn Faults Based on Fault Harmonic Component Tracking in LSPMSMs Working Under Nonstationary Conditions”, IEEE Access, vol. 9, pp. 92101–92112, 2021, doi: 10.1109/ACCESS.2021.3092605.
- [11] M. Skowron, “Application of deep learning neural networks for the diagnosis of electrical damage to the induction motor using the axial flux”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1031–1038, 2020, doi: 10.24425/bpasts.2020.134664.
- [12] P. Ewert, T. Orlowska-Kowalska, and K. Jankowska, “Effectiveness Analysis of PMSM Motor Rolling Bearing Fault Detectors Based on Vibration Analysis and Shallow Neural Networks”, Energies, vol. 14, no. 3, p. 712, 2021, doi: 10.3390/en14030712.
- [13] M. Krzysztofiak, T. Zawilak, and G. Tarchała, “Online control signal-based diagnosis of interturn short circuits of PMSM drive”, Arch. Electr. Eng., vol. 72, no. 1, pp. 103–124, 2023, doi: 10.24425/aee.2023.143692.
- [14] P. Pietrzak and M. Wolkiewicz, “Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents”, Energies, vol. 14, no. 6, p. 1630, 2021, doi: 10.3390/en14061630.
- [15] P. Pietrzak, M. Wolkiewicz, and T. Orlowska-Kowalska, “PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network”, IEEE Trans. Ind.l Electron., vol. 70, no. 5, pp. 5192–5202, 2023, doi: 10.1109/TIE.2022.3189076.
- [16] J. Urresty, J. Riba, L. Romeral, J. Rosero, and J. Serna, “Stator short circuits detection in PMSM by means of Hilbert-Huang transform and energy calculation”, in 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, IEEE, 2009, pp. 1–7, doi: 10.1109/DEMPED.2009.5292789.
- [17] P. Pietrzak and M. Wolkiewicz, “Stator Phase Current STFT analysis for the PMSM Stator Winding Fault Diagnosis”, in 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), IEEE, 2022, pp. 808–813. doi: 10.1109/SPEEDAM53979.2022.9841990.
- [18] P. Pietrzak and M. Wolkiewicz, “Condition Monitoring and Fault Diagnosis of Permanent Magnet Synchronous Motor Stator Winding Using the Continuous Wavelet Transform and Machine Learning”, Power Electron. Drives, vol. 9, no. 1, pp. 106–121, Jan. 2024, doi: 10.2478/pead-2024-0007.
- [19] G.R.Agah, A. Rahideh, H. Khodadadzadeh, S.M. Khoshnazar, and S. Hedayati Kia, “Broken Rotor Bar and Rotor Eccentricity Fault Detection in Induction Motors Using a Combination of Discrete Wavelet Transform and TeagerKaiser Energy Operator”, IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 2199–2206, 2022, doi: 10.1109/TEC.2022.3162394.
- [20] K.-J. Shih, M.-F. Hsieh, B.-J. Chen, and S.-F. Huang, “Machine Learning for Inter-Turn Short-Circuit Fault Diagnosis in Permanent Magnet Synchronous Motors”, IEEE Trans. Magn., vol. 58, no. 8, pp. 1–7, Aug. 2022, doi: 10.1109/TMAG.2022.3169173.
- [21] M. Skowron, T. Orlowska-Kowalska, and C.T.Kowalski, “Diagnosis of Stator Winding and Permanent Magnet Faults of PMSM Drive Using Shallow Neural Networks”, Electronics, vol. 12, no. 5, p. 1068, 2023, doi: 10.3390/electronics12051068.
- [22] M. Skowron, T. Orlowska-Kowalska, and C.T. Kowalski, “Detection of Permanent Magnet Damage of PMSM Drive Based on Direct Analysis of the Stator Phase Currents Using Convolutional Neural Network”, IEEE Trans. Ind. Electron.,, vol. 69, no. 12, pp. 13665–13675, 2022, doi: 10.1109/TIE.2022.3146557.
- [23] S. Shao, R. Yan, Y. Lu, P. Wang, and R.X.Gao, “DCNN-Based Multi-Signal Induction Motor Fault Diagnosis”, IEEE Trans Instrum. Meas., vol. 69, no. 6, pp. 2658–2669, 2020, doi: 10.1109/TIM.2019.2925247.
- [24] Z. Li et al., “Data-Driven Diagnosis of PMSM Drive with Self-Sensing Signal Visualization and Deep Transfer Learning”, IEEE Trans. Energy Convers., pp. 1–12, 2024, doi: 10.1109/TEC.2023.3331580.
- [25] M. Skowron, “Development of a universal diagnostic system for stator winding faults of induction motor and PMSM based on transfer learning”, in 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), IEEE, Aug. 2023, pp. 517–523, doi: 10.1109/SDEMPED54949.2023.10271444.
- [26] M. Skowron, M. Krzysztofiak, and T. Orlowska-Kowalska, “Effectiveness of Neural Fault Detectors of Permanent Magnet Synchronous Motor Trained With Symptoms From Field-Circuit Modeling”, IEEE Access, vol. 10, pp. 104598–104611, 2022, doi: 10.1109/ACCESS.2022.3211087.
- [27] L. Cohen, “Time-frequency distributions-a review”, Proc. IEEE, vol. 77, no. 7, pp. 941–981, 1989, doi: 10.1109/5.30749.
- [28] N. Diao, Z. Wang, H. Ma, and W. Yang, “Fault Diagnosis of Rolling Bearing Under Variable Working Conditions Based on CWT and T-ResNet”, J. Vibr. Eng. Technol., vol. 11, pp. 3747–3757, 2022, doi: 10.1007/s42417-022-00780-w.
- [29] J.M.Lilly and S.C.Olhede, “Higher-Order Properties of Analytic Wavelets”, IEEE Trans. Signal Process., vol. 57, no. 1, pp. 146–160, 2009, doi: 10.1109/TSP.2008.2007607.
- [30] J.M. Lilly and S.C. Olhede, “On the Analytic Wavelet Transform”, IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 4135–4156, Aug. 2010, doi: 10.1109/TIT.2010.2050935.
- [31] J.M. Lilly and S.C. Olhede, “Generalized Morse Wavelets as a Superfamily of Analytic Wavelets”, IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6036–6041, 2012, doi: 10.1109/TSP.2012.2210890.
- [32] S. Osowski, “Deep neural networks in application to data mining”, Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne, vol. 5, pp. 112–121, 2018.
- [33] F. Chollet, Deep learning with Python. New York: Manning Publications, 2017.
- [34] S. Lawrence, C.L.Giles, Ah Chung Tsoi, and A.D.Back, “Face recognition: a convolutional neural-network approach”, IEEE Trans. Neural Netw., vol. 8, no. 1, pp. 98–113, 1997, doi: 10.1109/72.554195.
- [35] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum in deep learning”, in Proc. 30th International Conference on Machine Learning, USA: PMLR, 2013, vol. 28, pp. 1139–1147.
- [36] P. Pietrzak and M. Wolkiewicz, “On-line Detection and Classification of PMSM Stator Winding Faults Based on Stator Current Symmetrical Components Analysis and the KNN Algorithm”, Electronics, vol. 10, no. 15, p. 1786, 2021, doi: 10.3390/electronics10151786.
- [37] M. Skowron, C.T.Kowalski, and T. Orlowska-Kowalska, “Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives”, Energies, vol. 15, no. 19, p. 7008, 2022, doi: 10.3390/en15197008.
- [38] P. Pietrzak and M. Wolkiewicz, “Fault Diagnosis of PMSM Stator Winding Based on Continuous Wavelet Transform Analysis of Stator Phase Current Signal and Selected Artificial Intelligence Techniques”, Electronics, vol. 12, no. 7, p. 1543, 2023, doi: 10.3390/electronics12071543.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7486cb9-1b68-4c46-84e2-350cb5cc2620