Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Size of a dataset is often a challenge in real-life applications. Especially, when working with time series data, when the next sample is produced every few milliseconds and can include measurements from hundreds of sensors, one has to take dimensionality of the data into consideration. In this work, we compare various dimensionality reduction methods for time series data and check their performance on a failure detection task. We work on sensory data coming from existing machines.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
69--78
Opis fizyczny
Bibliogr. 18 poz., tab.
Twórcy
autor
- Faculty of Mathematics and Computer Science ul. Lojasiewicza 6, 30-348 Kraków, Poland
autor
- Faculty of Mathematics and Computer Science ul. Lojasiewicza 6, 30-348 Kraków, Poland
autor
- AGH University of Science and Technology Faculty of Applied Mathematics al. Mickiewicza 30, 30-059 Kraków, Poland
- Reliability Solutions ul. Lublańska 34, 31-476 Kraków, Poland
Bibliografia
- [1] Grand View Research, I., Industrial internet of things (iiot) market analysis by component (solution, services, platform), by end-use (manufacturing, energy & power, oil & gas, healthcare, logistics & transport, ariculture), and segment forecasts, 2018–2025. Market Research Report, 2017.
- [2] Van Der Maaten L., Postma E., Van den Herik J., Dimensionality reduction: a comparative. J Mach Learn Res, 2009, 10, pp. 66–71.
- [3] Jolliffe I., Principal component analysis. Wiley Online Library, 2002.
- [4] Howland P., Park H., Generalizing discriminant analysis using the generalized singular value decomposition. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(8), pp. 995–1006.
- [5] Hyv¨arinen A., Karhunen J., Oja E., Independent component analysis. vol. 46.John Wiley & Sons, 2004.
- [6] Blei D.M., Ng A.Y., Jordan M.I., Latent dirichlet allocation. Journal of machine Learning research, 2003, 3 (Jan), pp. 993–1022.
- [7] Landauer T.K., Latent semantic analysis. Wiley Online Library, 2006.
- [8] Chua L., Deng A.C., Canonical piecewise-linear representation. IEEE Transactions on Circuits and Systems, 1988, 35 (1), pp. 101–111.
- [9] Yang J., Honavar V., Feature subset selection using a genetic algorithm. In: Feature extraction, construction and selection. Springer 1998 pp. 117–136.
- [10] Monahan A.H., Nonlinear principal component analysis by neural networks: theory and application to the lorenz system. Journal of Climate, 2000, 13 (4), pp. 821–835.
- [11] Schölkopf B., Smola A., M¨uller, K.R., Kernel principal component analysis. In: International Conference on Artificial Neural Networks, Springer, 1997, pp. 583–588.
- [12] Mika S., Ratsch G., Weston J., Scholkopf B., Mullers K.R., Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX, 1999. Proceedings of the 1999 IEEE signal processing society workshop., IEEE, 1999, pp. 41–48.
- [13] Venna, J., Kaski, S., Local multidimensional scaling. Neural Networks, 2006, 19 (6), pp. 889–899.
- [14] Verikas, A., Bacauskiene, M., Feature selection with neural networks. Pattern Recognition Letters, 2002, 23 (11), pp. 1323–1335.
- [15] Wu, Y.L., Tang, C.Y., Hor, M.K., Wu, P.F., Feature selection using genetic algorithm and cluster validation. Expert Systems with Applications, 2011, 38 (3), pp. 2727–2732.
- [16] Hochreiter, S., Schmidhuber, J., Long short-term memory. Neural computation, 1997, 9 (8), pp. 1735–1780.
- [17] Cho K., Van Merrienboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H., Bengio Y., Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
- [18] Cochran W.G., Cox G.M., Experimental designs., 1950.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b747d32b-33f5-4f79-b25f-d62e1b0f1a2c