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Abstract. Size of a dataset is often a challenge in real-life applications. Espe-

cially, when working with time series data, when the next sample is produced

every few milliseconds and can include measurements from hundreds of sensors,

one has to take dimensionality of the data into consideration. In this work,

we compare various dimensionality reduction methods for time series data and

check their performance on a failure detection task. We work on sensory data

coming from existing machines.
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1. Introduction

Dimensionality reduction has become an integral part of data analysis nowadays as
the amount of data that we are capable of collecting is much greater than what we
can actually process. However, a great part of the collected data might be redundant
or unnecessary, thus, dimensionality reduction methods are of major importance,
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especially for practical, industrial applications. According to report by Grand View
Research, Inc. [1], Industrial Internet of Things is rapidly growing with CAGR at
level about 27%. That directly implies humongous data sets collected by the industry.

One of the industrial applications is predictive maintenance, a machinery mainte-
nance strategy used to predict the oncoming failure. Such knowledge gives not only
huge financial benefits, as it can dramatically reduce operational costs but sometimes
also prevents environmental catastrophes or multiple casualties.

The choice of an appropriate dimensionality reduction model for a specific failure
detection task is not an easy problem. On the one hand, one must consider all
the sensors available as often a failure of a particular machine has roots in some
process problems of the connected machines. For large industrial applications such as
power plants, oil rigs or chemical plants, that often means measurements from tens of
thousands of sensors collected every minute. On the other hand, feeding mathematical
models with such huge data portions without proper preprocessing usually leads to
overfitting or generates false positives. Hence, tools that reduce the dimensionality
of data, either by selecting relevant features or by transforming the data to a lower-
dimensional space, play a major role in the initial data transformations.

Our goal in this paper is to investigate the value of dimensionality reduction
methods for the task of failure prediction.

The paper is organized as follows: in section 2. we describe the current state of
the art, in section 3. we give a brief summary of models used in this work, in section
4. we present what experiments were performed, in section 5. we present the results,
and, finally, in section 6. we enclose our conclusions.

2. State of the art

In this section, we want to draw attention to two areas of research: in section 2.1. to
dimensionality reduction models and in section 2.2. to sequential data. Moreover, in
section 2.3. we give some examples of why using real-life datasets might be a challenge.

2.1. Dimensionality reduction

Dimensionality reduction methods are in focus of researchers in many areas of real-
world applications for which datasets contain tens, hundreds, or millions of variables.
A large number of algorithms have been proposed to deal with such datasets [2].

Dimensionality reduction methods can be divided into two groups: models that
select most informative features, and models that project data to some lower dimen-
sional space. Selection-based models are more computationally effective after being
trained (selecting features is faster than applying any algebraic transformation) and
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do not cause loss of interpretability of data. However, transformation-based models
might yield better results in some applications.

Selection-based algorithms might be further divided into following classes:

� filter approach models consider statistical characteristics of the input data, ex.
select the features for which the correlation between the feature and the target
variable exceeds a correlation threshold. These methods are computationally
inexpensive;

� wrapper models train a chosen estimator on the original data and select relevant
features based on the performance of the learning algorithm. These methods
are computationally expensive;

� embedded approach adjusts existing methods and as a result feature selection
is built into the target model, examples of this approach are linear regression
with LASSO or regularized random forests.

Transform-based models project existing features into new, lower-dimensional fea-
ture space, which, we hope, better explains our observations. These methods can be
divided into two classes:

� linear: PCA (Principal Component Analysis) [3]; Singular Value Decomposition
(SVD) [4]; ICA (Independent component analysis) [5]; LDA (Latent Dirichlet
Allocation) [6]; Latent semantic indexing [7]; Piecewise Linear Representation
[8]; Genetic Programming [9];

� non-linear: NPCA (nonlinear PCS) [10] or KPCA (kernel principal component
analysis) [11]; NLDA or KLDA [12]; MDS (Multidimensional scaling) [13]; Prin-
cipal curves; Neural networks [14]; Genetic Programming [15].

2.2. Sequential data

A common practice when working with sequential data is to represent it as a combi-
nation of several factors. Two types can be distinguished:

� systematic – components of the time series that have consistency or recurrence
and can be described and modeled;

� unsystematic – components of the time series that cannot be directly modeled.

Thus the data series is thought to be an aggregation or combination of following
four components:

� Trend component (long-term trend) – A trend exists when there is a long-term
increase or decrease in the data. It does not have to be linear. Sometimes we
will refer to a trend changing direction when it might go from an increasing
trend to a decreasing trend.
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� Seasonal component (seasonal variation) – A seasonal pattern exists when a se-
ries is influenced by seasonal factors (e.g. a quarter of a year, or a day of the
week). Seasonality is always of a fixed and known period.

� Cyclical component (repeated but non-periodic fluctuations) – A cyclic pattern
exists when data exhibit rises and falls that are not of fixed period.

� Irregular component (the residuals) – This component contains the volatile part
of the series (noisy or random) and tends to be the least predictable of all the
elements.

Currently, the most successful models for sequential data are recurrent neural
networks, especially their modifications Long Short-Term Memory (LSTM) networks
[16] and Gated Recurrent Unit (GRU) networks [17]. However, in this work, we
decided to concentrate on such models that are feasible for embedded systems, what
requires that their training and inference time is short. Therefore, we had to abandon
recurrent neural networks approach.

2.3. Challenging character of real-life data

Real-world datasets are often challenging due to many factors such as unknown nature
of noise, little or no knowledge of how are features correlated with the target variable
and if they are indeed correlated. In many cases, the data on which the analysis
is performed has been previously anonymized and as a result, any guess of what
the features represent is impossible. Anonymizing techniques such as hashing or
normalizing the data make it also more difficult to draw conclusions about the original
nature of the data, ex. which features are more noisy and which are more reliable.

For failure prediction task two maybe most important challenges are high in-
consistency of features, which might be caused by varying operating conditions and
asses-to-asset variations, and low sensitivity of features to faults or degradation.

To answer the above problem one might try using such techniques as normalization
of the data, finding generalizable features, clustering samples depending on operating
conditions, or using local models.

3. Review of used methods

In this section, we briefly describe dimensionality reduction models, which we use in
the experimental part of this work. For each method, we define acronyms used in the
further part of this article.
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3.1. Selection-based models

The problem of feature selection is defined as follows: given a set of available features,
select such a subset that performs best under some classification system or other
appropriate relevance measure ex. time or memory consumption.

� CHI2 – the χ2 statistics between the target and each feature is calculated and
then the desired number of features with the best χ2 score is selected. Features
that are not correlated with the target have χ2 statistics close to zero and are
not selected.

� CLASSIF – ANOVA F-value [18] between the target vector and each feature
is calculated. The higher F-value is, the more proportion of variance the feature
or groups of features can explain in the target data. Features with high F-value
should be selected.

� REGR – A method using F-value between label/feature for classification tasks.
The correlation between each regressor and the target is computed and the result
is transformed into F score then to a p-value – the best are described by best
features.

� MUTUAL – Mutual information quantifies the dependence between two ran-
dom variables in terms of information communicated about the value of one
variable given knowledge of the other. If mutual information is close to zero
both variables are independent. Variables are compared using this criterion.

3.2. Transformation-based models

Transformation-based models project data onto a lower-dimensional subspace which
best fits the data. There are several criteria that define a ”good fit” and therefore
there exist several different algorithms for finding a subspace that meets the chosen
criterion.

� PCA – based on the covariance matrix of the features the most significant
principal components are chosen to form the directions of the new coordinate
system;

� TSVD – a variant of singular value decomposition (SVD) that computes only
the k largest singular values. This method is similar to PCA;

� FICA – uses FastICA algorithm to find independent components which form
a base of the new coordinate system

� FAC ANA – Factor Analysis performs a maximum likelihood estimate of the
so-called loading matrix, the transformation of the latent variables to the ob-
served ones, using expectation-maximization (EM).
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4. Experiments

In this section, we describe the challenges that had to be faced while working with the
data and the experiments we conducted. In section 4.1. we describe general problems
that we encountered while working with the given data and in section 4.2. we describe
the experiments.

4.1. Challenging character of the data

During our experiments, we had to face some challenges issued by the data char-
acteristics. The most obvious one was an extreme class-imbalance - each dataset
contained no more than 1% of samples labeled as failures. Moreover, there was no
certainty that all failures will be similar, i.e. each failure might be very different to all
others and that makes a classification task, on which we evaluated the dimensionality
reduction models, very difficult. Furthermore, failures were not uniformly distributed
within the datasets which made it a necessity to define splits manually so that each
split would have similar class-balance and considerable size. Finally, the size of the
datasets and the motivation to use the methods in embedded systems restricted the
choice of both dimensionality reduction and classification models to computationally
efficient representatives.

4.2. Setup

For the experiments, we used two datasets obtained from the company Reliability
Solutions. The dataset RS1 had originally 49 dimensions, over 2.8M samples and
contained only 16 samples labeled as failures. It was reduced to 18 dimensions. The
dataset RS2 had originally 296 dimensions, over 2.2M samples and over 18K samples
labeled as failures. It was reduced to 30 dimensions.

The quality of the concerned dimensionality reduction methods was measured on a
classification task. We used logistic regression and random forests as representatives
of linear and nonlinear methods. Grid search was performed to choose the best
hyperparameters for each model.

During our experiments, we learned that splitting the datasets must be performed
very carefully, which was already mentioned in section 4.1. Double cross-validation
was performed using time split in such a way so that each split would have similar
class balance and be of considerable size. Failures that belonged to one group were
assigned to the same split.

The trend was removed from the data before running any necessary processing.
Each of the considered dimensionality reduction models requires different preprocess-
ing and in some cases, the data was processed after dimensionality reduction as well.
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The details are presented below.

� CHI2 - before reducing the dimensionality each feature was scaled to [0, 1]

� CLASSIF - data was not altered in any way

� FAC ANA - each feature was scaled and centered before and after reducing the
dimensionality

� FICA - data was whitened before reducing dimensionality and each feature was
scaled and centered after reducing the dimensionality

� MUTUAL - data was not altered in any way

� PCA - each feature was scaled and centered before and after reducing the di-
mensionality

� REGR - before reducing dimensionality each feature was scaled to [−1, 1]

� TSVD - each feature was scaled and centered before and after reducing the
dimensionality

We report the mean value of Matthews Correlation Coefficient on four different
testing sets.

5. Results
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Logistic Regression
rs1 0.35 0.07 0.25 0.00 0.08 0.10 0.36 0.13
rs2 0.12 0.05 0.32 0.11 -0.03 0.11 0.03 0.11

Random Forest
rs1 0.41 0.39 0.39 0.41 0.00 0.82 0.81 0.82
rs2 0.56 0.40 0.40 0.36 0.02 0.09 0.20 0.08

Table 1. MCC score for each dimensionality reduction method obtained using logistic
regression and random forests on datasets rs1 and rs2.

Table 1 presents average MCC score obtained by logistic regression and random
forests on datasets transformed by different dimensionality reduction methods. These
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results suggest that the correlation between new features and the presence of a fail-
ure is a nonlinear one. There is no clear evidence for the superiority of any group
of methods - depending on the dataset and classification model used either select-
ing or transforming methods achieved better performance. The obtained results are
satisfactory considering the challenging character of the data.

In tables 2 and 3 we present an average time needed to reduce the dimension-
ality and to train and test the best performing models respectively. Dimensionality
reduction and training of each model were performed on a single CPU unit. All dimen-
sionality reduction methods but Mutual finished their task by 10 minutes. Training
and prediction times spanned from few minutes up to an hour depending on the di-
mensionality reduction model and classification method used. These results suggest
that some of the considered models are feasible for embedded systems.
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rs1 18s 15s 53s 49m 15s 1m 40s 46s 10m 3s 35s
rs2 56s 54s 1m 30s 3h 37m 4m 37s 3m 39s 9m 38s 1m 22s

Table 2. Average times needed for dimensionality reduction by different methods.
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Logistic Regression
rs1 2m 36s 2m 25s 1m 46s 2m 35s 2m 32s 2m 31s 2m 32s 2m 29s
rs2 1m 6s 2m 38s 2m 6s 2m 44s 1m 25s 1m 20s 3m 3s 1m 30s

Random Forest
rs1 5m 38s 8m 22s 7m 13s 6m 22s 9m 29s 8m 42s 13m 21s 8m 42s
rs2 15m 36s 20m 34s 20m 18s 16m 44s 48m 28s 19m 26s 27m 38s 19m 13s

Table 3. Average times for training and testing best performing models.

6. Conclusions

Our experiments show that when tackling time series data of enormous size one should
consider dimensionality reduction methods based both on selection and on transfor-
mation. There is no clear indication whether to use selection- or transformation-
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based models. At least some of the analyzed dimensionality reduction models can
be effectively used in real-world applications using big datasets. Logistic regression
and random forests have feasible training time even for big datasets. Random forests
can achieve satisfactory results even on nonlinear tasks. The problem of classifying
failures seems to be such a nonlinear problem.
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