PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Substation reliability evaluation in the context of the stability prediction of power grids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the presented work was to examine the reliability assessment model on the example of a selected power grid object. The analyzed object was tested based on assumptions about technological breaks that were caused by overvoltage, among others. The study was conducted to check the reliability of integral elements of the power grid object and to assess the change in reliability level as a function of the frequency of inspections. The test results are to determine the optimal frequency of inspections of individual power grid objects in order to increase its reliability. In addition, the possibility of correlating optimal inspection periods resulting from the findings of this paper with periodic inspections of power network facilities was assessed.
Słowa kluczowe
Rocznik
Strony
769--776
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
  • University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 2, 10-719 Olsztyn, Poland
  • Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine
autor
  • Lviv Polytechnic National University, ul. S. Bandery St 12, 79000 Lviv, Ukraine
Bibliografia
  • [1] T.F. Malakhova, S.G. Zakharenko, S.A. Zakharov, D.S. Kudryashov, E.V. Skrebneva, and A.O. Balaganskiy, “Lightning storms and protection of power supply systems against atmospheric overvoltage”, Vest. of Kuzbass State Tech. Univer. 4, 110‒116 (2017).
  • [2] D. Karamov and S. Perzhabinsky, “Influence of failures of overhead lines on reliability of autonomous power supply system”, E3S Web of Conferences. 69, 2018, pp. 1‒3.
  • [3] D. Xu and H. Wang, “Blackout Risk Assessment of Cascading Outages Considering Wind Power Uncertainty,” 2018 IEEE International Conference on Energy Internet (ICEI), Beijing, 2018, 252‒257.
  • [4] B. Carreras, J. Reynolds-Barredo, I. Dobson, and D, Newman, “Validating the OPA cascading blackout model on a 19402 bus transmission network with both mesh and tree structures”, 2019 52nd Hawaii International Conference on System Sciences (HICSS), USA, 2019, pp. 3494‒3503.
  • [5] A.M. Tsimtsios and A.S. Safigianni, “Optimization of a medium voltage power distribution network's reliability indices,” 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 2016, pp. 1‒6.
  • [6] W. Liu, Z. Xiaoxing, Qi. Chen, and P. Xu, “Overall Voltage Level Reliability and Economy Coordinated Analysis in Distribution Network”, Int. J. of Electr. Energy. 6(2), 47‒51 (2018).
  • [7] F. Mahfoud, B. Guzun, G. Lazaroiu, and H. Alhelou, “Power Quality of Electrical Power Systems”. In Handbook of Research on Smart Power System Operation and Control”, pp. 265–288, IGI Global: Hershey, PA, USA, 2019.
  • [8] N. Nikolov, N. Dimitrova, A. Georgiev and M. Vasileva, “Reliability assessment of electricity distribution substation surge protection system,” 2017 40th International Spring Seminar on Electronics Technology (ISSE), Sofia, Bulgaria, 2017, pp. 1‒6.
  • [9] H.H. Alhelou, “Under Frequency Load Shedding Techniques for Future Smart Power Systems”. In Handbook of Research on Smart Power System Operation and Control, pp. 188–202, IGI Global: Hershey, PA, USA, 2019.
  • [10] R. Yan, N. Al Masood, T. Kumar Saha, F. Bai, and H. Gu, “The Anatomy of the 2016 South Australia Blackout: A Catastrophic Event in a High Renewable Network,” in IEEE Trans. Power Syst. 33(5), 5374‒5388 (2018).
  • [11] E. Vianna, A. Abaide, L. Canha, and V. Miranda, “Substations SF6 circuit breakers: Reliability evaluation based on equipment condition”, Electr. Power Syst. Res. 142, 36‒46 (2017).
  • [12] F. Shaikh, M. Alam, M. Asghar, and F. Ahmad, “Blackout Mitigation of Voltage Stability Constrained Transmission Corridors through Controlled Series Resistors”, Recent Adv. Electr. Electron. Eng. 11, 4–14 (2018).
  • [13] F. Bignucolo, A. Savio, M. Coppo, R. Turri, A. Cerretti, and R. Calone, “Reliable protection systems for locally supplied medium-voltage distribution networks,” in CIRED – Open Access Proc. J. 2017(1), 1414‒1418 (2017).
  • [14] M. Ghiasi, Ghadimi, and E. Ahmadinia, “An analytical methodology for reliability assessment and failure analysis in distributed power system”, SN Appl. Sci., Springer, 44 (2019).
  • [15] S. Amini, F. Pasqualetti, and H. Mohsenian-Rad, “Dynamic Load Altering Attacks Against Power System Stability: Attack Models and Protection Schemes,” in IEEE Trans. Smart Grid. 9(4), 2862‒2872 (2018).
  • [16] F. Gazijahani, S. Ravadanegh, and J. Salehi, “Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under riskased strategies”, ISA Trans. 73, 100–111 (2018).
  • [17] M.R. Salimian and M.R. Aghamohammadi, “A Three Stages Decision Tree-Based Intelligent Blackout Predictor for Power Systems Using Brittleness Indices”, in IEEE Trans. on Smart Grid. 9(5), 5123‒5131 (2018).
  • [18] Y. Zhang, Y. Xu and Z.Y. Dong, “Robust Ensemble Data Analytics for Incomplete PMU Measurements-Based Power System Stability Assessment”, in IEEE Trans. Power Syst. 33(1), 1124‒1126 (2018).
  • [19] I. Soesanti and R. Syahputra, “Batik Production Process Optimization Using Particle Swarm Optimization Method”, J. of Theor. and App. Inform. Tech. (JATIT). 86(2), 272‒278 (2016).
  • [20] D. Kirschen and G. Strbac, “Fundamentals of Power System Economics”, John Wiley & Sons: New York, NY, USA, 2018.
  • [21] J.S. Nunes, A.M.L. da Silva, and J.G. de C. Costa, “Impact of Transmission and Subtransmission Failures on Distribution Reliability Indices”, 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, 2018, pp. 1‒6.
  • [22] S. Robak and R.M. Raczkowski, “Substations for offshore wind farms: a review from the perspective of the needs of the Polish wind energy”, Bull. Pol. Ac.: Tech. 66(4), 517‒528 (2018).
  • [23] G. Benysek, M.P. Kazmierkowski, J. Popczyk, and R. Strzelecki, “Power electronic systems as a crucial part of Smart Grid infrastructure – a survey”, Bull. Pol. Ac.: Tech. 59(4), 455‒473 (2011).
  • [24] Y. Tits et al., “Evaluation of lifetime of air-insulated switchgear versus service conditions in MV substations”, in CIRED – Open Access Proc. J. 2017(1), 144‒148 (2017).
  • [25] D. Spalek, “Proposal of the criterion for transmission line lumped parameters analysis”, Bull. Pol. Ac.: Tech. 67(6), 1181‒1186 (2019).
  • [26] K. Helal, R. Maladen, F. Gentils, and O. Kozlova, “Medium-voltage shielded busbar long-term ageing test method”, in CIRED – Open Access Proc. J. 2017(1), 325‒328 (2017).
  • [27] A. Kowalow, W. Mucha, V. Jakimszina, and O. Oniszczenko, “Reliability assessment of load nodes of substation 110/6kV”, DNUT. 9, 135‒139 (2009).
  • [28] “General information about electric networks”, OOO «NVSK», 2019.
  • [29] V.S. Viktorov and A.S. Stepanyants, “Models and methods for calculating the reliability of technical systems”, M.: LENAND, 43(4), 53–62 (2016).
  • [30] N.E. Savoskin, “Reliability of electrical systems”, Penza: Publishing House of the Penza State. University, 2004.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b74722d5-c22b-414d-ac0a-96340f920606
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.