Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work proposes a convex cooperative control scheme for a multiagent system of differential mobile robots in a leader-follower formation. First, the kinematic model of the differential robots is obtained in a linear parameter varying representation. Next, a reference model approach is considered to track the desired trajectory. The paper’s contribution is then to derive conditions to guarantee the convergence of the convex controller, which is achieved using a non-quadratic Lyapunov function. Subsequently, this control law is integrated into the agent that leads a distributed control protocol based on graph theory designed to reach the consensus of the followers. Simulations of five mobile robots are performed to illustrate the effectiveness of the proposed method.
Słowa kluczowe
Rocznik
Tom
Strony
199--210
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
- TURIX-Dynamics - Diagnosis and Control Group, National Technological Institute of Mexico, IT Tuxtla Gutiérrez, Carr. Panamericana Km. 1080, SN, 29050, Tuxtla Gtz, Mexico
autor
- TURIX-Dynamics - Diagnosis and Control Group, National Technological Institute of Mexico, IT Tuxtla Gutiérrez, Carr. Panamericana Km. 1080, SN, 29050, Tuxtla Gtz, Mexico
autor
- Institute of Robotics and Industrial Informatics, Polytechnic University of Catalonia, C/Llorens i Artigas 4-6, 08028, Barcelona, Spain
- IIxM CONAHCYT & TURIX-Dynamics - Diagnosis and Control Group, National Technological Institute of Mexico, IT Hermosillo, Av. Tecnológico 115, 83170, Hermosillo, Mexico
- TURIX-Dynamics - Diagnosis and Control Group, National Technological Institute of Mexico, IT Tuxtla Gutiérrez, Carr. Panamericana Km. 1080, SN, 29050, Tuxtla Gtz, Mexico
- IIxM CONAHCYT & TURIX-Dynamics - Diagnosis and Control Group, National Technological Institute of Mexico, IT Hermosillo, Av. Tecnológico 115, 83170, Hermosillo, Mexico
Bibliografia
- [1] Abdulwahhab, O.W. and Abbas, N.H. (2018). Design and stability analysis of a fractional order state feedback controller for trajectory tracking of a differential drive robot, International Journal of Control, Automation and Systems 16(6): 2790-2800.
- [2] Ahmed, I., Rehan, M., Iqbal, N. and Ahn, C.K. (2023). A novel event-triggered consensus approach for generic linear multi-agents under heterogeneous sector-restricted input nonlinearities, IEEE Transactions on Network Science and Engineering 10(3): 1648-1658.
- [3] Ahsan Razaq, M., Rehan, M., Tahir, F. and Chadli, M. (2020). H∞ leader-based consensus of non-linear multi-agents over switching graphs and disturbances using multiple Lyapunov functions, IET Control Theory & Applications 14(20): 3395-3405.
- [4] Ai, X. and Wang, L. (2021). Distributed fixed-time event-triggered consensus of linear multi-agent systems with input delay, International Journal of Robust and Nonlinear Control 31(7): 2526-2545.
- [5] Amirkhani, A. and Barshooi, A.H. (2022). Consensus in multi-agent systems: A review, Artificial Intelligence Review 55(5): 3897-3935.
- [6] Attallah, A. and Werner, H. (2020). Information flow in formation control for nonholonomic agents modeled as LPV systems, 2020 European Control Conference (ECC), St. Petersurg, Russia, pp. 459-464.
- [7] Bernal, M., Estrada, V. and Márquez, R. (2019). Diseno e implementación de sistemas de control basados en estructuras convexas y desigualdades matriciales lineales, Pearson, Mexico City.
- [8] Blažič, S. and Bernal, M. (2011). Trajectory tracking for nonholonomic mobile robots based on extended models, IFAC Proceedings Volumes 44(1): 5938-5943.
- [9] Corke, P. (2017). Robotics, Vision and Control: Fundamental Algorithms in MATLAB®, 2nd Edn, Springer, Cham.
- [10] Dian, S., Han, J., Guo, R., Li, S., Zhao, T., Hu, Y. and Wu, Q. (2019). Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots, International Journal of Fuzzy Systems 21(7): 2032-2042.
- [11] Gong, S., Zheng, M., Hu, J. and Zhang, A. (2023). Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus, International Journal of Applied Mathematics and Computer Science 33(3): 439-448, DOI: 10.34768/amcs-2023-0032.
- [12] González-Sierra, J., Aranda-Bricaire, E., Rodríguez-Cortés, H. and Santiaguillo-Salinas, J. (2021). Formation tracking for a group of differential-drive mobile robots using an attitude observer, International Journal of Control 94(1): 89-102.
- [13] Lendek, Z., Guerra, T.M., Babuska, R. and De Schutter, B. (2011). Stability analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models, Springer, Berlin.
- [14] Lewis, F.L., Zhang, H., Hengster-Movric, K. and Das, A. (2013). Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches, Springer, London.
- [15] Liu, G., Wu, S., Zhu, L., Wang, J. and Lv, Q. (2022). Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction, International Journal of Applied Mathematics and Computer Science 32(1): 11-21, DOI: 10.34768/amcs-2022-0002.
- [16] Liu, Y., Li, T., Shan, Q., Yu, R., Wu, Y. and Chen, C.P. (2020). Online optimal consensus control of unknown linear multi-agent systems via time-based adaptive dynamic programming, Neurocomputing 404(1): 137-144.
- [17] Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in Matlab, IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 284-289.
- [18] Manoharan, S.H. and Chiu, W.-Y. (2019). Consensus based formation control of automated guided vehicles using dynamic destination approach, 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan, pp. 902-907.
- [19] Miao, Z., Liu, Y.-H., Wang, Y., Yi, G. and Fierro, R. (2018). Distributed estimation and control for leader-following formations of nonholonomic mobile robots, IEEE Transactions on Automation Science and Engineering 15(4): 1946-1954.
- [20] Moradi, M., Safarinejadian, B. and Shafiei, M. (2022). H∞ smooth switching distributed consensus controller for uncertain time-delay switched LPV multi-agent systems, Transactions of the Institute of Measurement and Control 44(12): 2454-2471.
- [21] Moreno-Valenzuela, J., Montoya-Villegas, L.G., Pérez-Alcocer, R. and Rascón, R. (2022). Saturated proportional-integral-type control of UWMRS with experimental evaluations, International Journal of Control, Automation and Systems 20(1): 184-197.
- [22] Nuno, E., Loria, A., Hernández, T., Maghenem, M. and Panteley, E. (2020). Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays, Automatica 120(1): 109114.
- [23] Ollervides-Vazquez, E.J., Rojo-Rodriguez, E.G., Garcia-Salazar, O., Amezquita-Brooks, L., Castillo, P. and Santibañez, V. (2020). A sectorial fuzzy consensus algorithm for the formation flight of multiple quadrotor unmanned aerial vehicles, International Journal of Micro Air Vehicles 12: 1-24.
- [24] Razaq, M.A., Rehan, M., Hussain, M., Ahmed, S. and Hong, K. (2023). Observer-based leader-following consensus of one-sided Lipschitz multi-agent systems over input saturation and directed graphs, Asian Journal of Control 25(5): 4096-4112.
- [25] Rehan, M., Ahn, C.K. and Chadli, M. (2019). Consensus of one-sided Lipschitz multi-agents under input saturation, IEEE Transactions on Circuits and Systems II: Express Briefs 67(4): 745-749.
- [26] Saadabadi, H. and Werner, H. (2021). Event-triggered [...] optimal formation control for agents modeled as LPV systems, IEEE Conference on Decision and Control (CDC), Austin, USA, pp. 1256-1262.
- [27] Sturm, J.F. (1999). Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones, Optimization Methods and Software 11(1-4): 625-653.
- [28] Subiantoro, A., Hadi, M.S.A. and Muis, A. (2020). Distributed linear parameter varying model predictive controller with event-triggered mechanism for nonholonomic mobile robot, International Conference on Advances in the Emerging Computing Technologies (AECT), Al Madinah Al Munawwarah, Saudi Arabia, pp. 1-6.
- [29] Vafamand, N. and Shasadeghi, M. (2017). More relaxed non-quadratic stabilization conditions using TS open loop system and control law properties, Asian Journal of Control 19(2): 467-481.
- [30] Wu, X., Wang, S. and Xing, M. (2018). Observer-based leader-following formation control for multi-robot with obstacle avoidance, IEEE Access 7(1): 14791-14798.
- [31] Yao, P., Wei, Y. and Zhao, Z. (2022). Null-space-based modulated reference trajectory generator for multi-robots formation in obstacle environment, ISA Transactions 123(1): 168-178.
- [32] Zakwan, M. and Ahmed, S. (2019). Distributed output feedback control of decomposable LPV systems with delay: Application to multi-agent nonholonomic systems, European Control Conference (ECC), Naples, Italy, pp. 2899-2903.
- [33] Zhang, J., Zhang, H., Sun, S. and Gao, Z. (2021). Leader-follower consensus control for linear multi-agent systems by fully distributed edge-event-triggered adaptive strategies, Information Sciences 555(1): 314-338.
- [34] Zhang, S., Zhang, T., Guo, H. and Zhang, F. (2022). General attitude cooperative control of satellite formation by set stabilization, Acta Astronautica 191(1): 125-133.
- [35] Zhu, F. and Tan, C. (2023). Consensus control of linear parameter-varying multi-agent systems with unknown inputs, Sensors 23(11): 5125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b743d7d9-55e6-4b6e-b820-fdfc15d06370