PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent fault diagnosis of power transmission line using fuzzy logic and artificial neural network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.
Czasopismo
Rocznik
Strony
art. no. 2022410
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Sciences and Technology, Ziane Achour University, Djelfa, Algeria
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Sciences and Technology, Ziane Achour University, Djelfa, Algeria
autor
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Sciences and Technology, Ziane Achour University, Djelfa, Algeria
  • Applied Automation and Industrial Diagnostics Laboratory, Faculty of Sciences and Technology, Ziane Achour University, Djelfa, Algeria
Bibliografia
  • 1. Avagaddi P, Edward B, Ravi K. A review on fault classification methodologies in power transmission systems: Part-I. Journal of Electrical Systems and Information Technology. 2018;5(1):48-60. https://doi.org/10.1016/j.jesit.2017.01.004.
  • 2. Mukherjee A, Kundu P, Das A. Transmission Line Faults in Power System and the Different Algorithms for Identification, Classification and Localization: A Brief Review of Methods 2020.
  • 3. Samantaray SR. A systematic fuzzy rule based approach for fault classification in transmission lines. Applied Soft Computing. 2013;13(2): 928-938. https://doi.org/10.1016/j.asoc.2012.09.010.
  • 4. Di Santo SG, CEdM Pereira, Fault location method applied to transmission lines of general configuration. International Journal of Electrical Power & Energy Systems. 2015;69:287-294. https://doi.org/10.1016/j.ijepes.2015.01.014.
  • 5. Ghorbani A, Sanaye-Pasand M, Mehrjerdi H. Accelerated distance protection for transmission lines based on accurate fault location. Electric Power Systems Research. 2021;193:107021 https://doi.org/10.1016/j.epsr.2021.107021.
  • 6. Moravej Z, Pazoki M, Khederzadeh M. New smart fault locator in compensated line with UPFC. International Journal of Electrical Power & Energy Systems. 2017;92:125-135. https://doi.org/10.1016/j.ijepes.2017.05.002.
  • 7. Taheri R, Eslami M, Damchi Y. Single-end currentbased algorithm for fault location in series capacitor compensated transmission lines. International Journal of Electrical Power & Energy Systems. 2020;123: 106254. https://doi.org/10.1016/j.ijepes.2020.106254.
  • 8. Lopes F, Dantas K, Costa F. Accurate Two-Terminal Transmission Line Fault Location Using Traveling Waves. IEEE Transactions on Power Delivery 2018;33(2):873-880. https://doi.org/10.1109/TPWRD.2017.2711262.
  • 9. Parsi M, Crossley PA, Dragotti PL, Cole D. Wavelet based fault location on power transmission lines using real-world travelling wave data. Electric Power Systems Research. 2020;186:106261. https://doi.org/10.1016/j.epsr.2020.106261.
  • 10. Gonzalez-Sanchez VH, Torres-García V, and Guillen D. Fault location on transmission lines based on travelling waves using correlation and MODWT. Electric Power Systems Research. 2021;197:107308. https://doi.org/10.1016/j.epsr.2021.107308.
  • 11. Mamiş MS, Arkan M, Keleş C. Transmission lines fault location using transient signal spectrum. International Journal of Electrical Power & Energy Systems. 2013;53:714-718. https://doi.org/10.1016/j.ijepes.2013.05.045.
  • 12. Abd el-Ghany HA, Azmy AM, Abeid AM. A General Travelling-Wave-Based Scheme for Locating Simultaneous Faults in Transmission Lines. IEEE Transactions on Power Delivery. 2020;35(1):130-139. https://doi.org/10.1109/TPWRD.2019.2931178.
  • 13. Ding J, Wang X, Li L. Distributed Traveling-WaveBased Fault-Location Algorithm Embedded in Multiterminal Transmission Lines. IEEE Transactions on Power Delivery. 2018; 33(6):3045-3054. https://doi.org/10.1109/TPWRD.2018.2866634.
  • 14. Akmaz D, Mamis MS, Arkan M, Tagluk ME. Transmission line fault location using traveling wave frequencies and extreme learning machine. Electric power systems research. 2018;155:1-7. https://doi.org/10.1016/j.epsr.2017.09.019.
  • 15. Naidu OD, Pradhan AK. A Traveling Wave-Based Fault Location Method Using Unsynchronized Current Measurements. IEEE Transactions on Power Delivery. 2019;34(2):505-513. https://doi.org/10.1109/TPWRD.2018.2875598.
  • 16. Ghazizadeh-Ahsaee M. Time-domain based fault location for series compensated transmission lines without requiring fault type. Electric Power Systems Research. 2020;181:106171. https://doi.org/10.1016/j.epsr.2019.106171.
  • 17. Saber A, Zeineldin HH, El-Fouly Thm, Al-Durra A. Time-Domain Fault Location Algorithm for DoubleCircuit Transmission Lines Connected to Large Scale Wind Farms. IEEE Access. 2021; 9: 11393-11404. https://doi.org/10.1109/ACCESS.2021.3049484.
  • 18. Kumar BR, Mohapatra A, Chakrabarti S, Kumar A. Phase angle-based fault detection and classification for protection of transmission lines. International Journal of Electrical Power & Energy Systems. 2021;133:107258. https://doi.org/10.1016/j.ijepes.2021.107258.
  • 19. Ji L, Tao X, Fu Y, Fu Y. A New Single Ended Fault Location Method for Transmission Line Based on Positive Sequence Superimposed Network during Auto Reclosing. IEEE Transactions on Power Delivery 2019;34(3):1019-1029. https://doi.org/10.1109/TPWRD.2019.2901835.
  • 20. Fan R, Liu Y, Huang R, Diao R, Wang S. Precise Fault Location on Transmission Lines Using Ensemble Kalman Filter. IEEE Transactions on Power Delivery. 2018;33(6):3252-3255. https://doi.org/10.1109/TPWRD.2018.2849879.
  • 21. Shaik AG, Pulipaka RRV. A new wavelet based fault detection, classification and location in transmission lines. International Journal of Electrical Power & Energy Systems. 2015;64:35-40. https://doi.org/10.1109/PECON.2006.346630.
  • 22. Krishnanand KR, Dash PK, Naeem MH. Detection, classification and location of faults in power transmission lines. International Journal of Electrical Power & Energy Systems. 2015; 67:76-86. https://doi.org/10.1016/j.ijepes.2014.11.012.
  • 23. Han J, Miao S, Li Y, Yang W, Yin H. Faulted-Phase classification for transmission lines using gradient similarity visualization and cross-domain adaptionbased convolutional neural network. Electric Power Systems Research. 2021;191:106876. https://doi.org/10.1016/j.epsr.2020.106876.
  • 24. Rafique F, Fu L, Mai R. End to end machine learning for fault detection and classification in power transmission lines. Electric Power Systems Research 2021;199: 107430. https://doi.org/10.1016/j.epsr.2021.107430.
  • 25. Chen K, Hu J, He J. Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and Convolutional Sparse Autoencoder. IEEE Transactions on Smart Grid. 2016;9:1748-1758. https://doi.org/10.1109/TSG.2016.2598881.
  • 26. Fathabadi H. Novel filter based ANN approach for short-circuit faults detection, classification and location in power transmission lines. International Journal of Electrical Power & Energy Systems. 2016; 74:374-383. https://doi.org/10.1016/j.ijepes.2015.08.005.
  • 27. Jiao Z, Wu R. A New Method to Improve Fault Location Accuracy in Transmission Line Based on Fuzzy Multi-Sensor Data Fusion. IEEE Transactions Smart Grid. 2019;10(4):4211-4220. https://doi.org/10.1109/TSG.2018.2853678.
  • 28. Wang T, Zhang G, Zhao J, He Z, Wang J, PérezJiménez MJ. Fault Diagnosis of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural P Systems. IEEE Transactions on Power Systems. 2015; 30(3):1182-1194. https://doi.org/10.1109/TPWRS.2014.2347699.
  • 29. Farshad M, Sadeh J. Accurate Single-Phase FaultLocation Method for Transmission Lines Based on KNearest Neighbor Algorithm Using One-End Voltage. IEEE Transactions on Power Delivery. 2012; 27(4): 2360-2367. https://doi.org/10.1109/TPWRD.2012.2211898.
  • 30. Safar H. Power transmission line analysis using exact, nominal π, and modified π models. in 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE) 2010.
  • 31. Mohd Amiruddin AAA, Zabiri H, Taqvi SAA, Tufa LD. Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems. Neural Computing and Applications. 2020;32(2):447-472. https://doi.org/10.1007/s00521-018-3911-5.
  • 32. Prakash S, Sinha S. Application of artificial intelligence in load frequency control of interconnected power system. International Journal of Engineering, Science and Technology 2011; 3. https://doi.org/10.4314/ijest.v3i4.68558.
  • 33. Lv C, Yang X, Junzhi Z, Xiaoxiang N, Yutong L, Teng L, Dongpu C, Fei-Yue W. Levenberg-Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System. IEEE Transactions on Industrial Informatics 2018; 14(8):3436-3446. https://doi.org/10.1109/TII.2017.2777460.
  • 34. Rubio JdJ. Stability Analysis of the Modified Levenberg–Marquardt Algorithm for the Artificial Neural Network Training. IEEE Transactions on Neural Networks and Learning Systems 2021; 32(8): 3510-3524. https://doi.org/10.1109/TNNLS.2020.3015200.
  • 35. Thaker S, Nagori V. Analysis of Fuzzification Process in Fuzzy Expert System. Procedia Computer Science. 2018;132:1308-1316. https://doi.org/10.1016/j.procs.2018.05.047.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b741f364-29c9-465c-a0a0-47e21ac741c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.