PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ wstępnej alkalizacji odpadów lignocelulozowych na ich rozkład enzymatyczny
Języki publikacji
EN
Abstrakty
EN
The presented results of research on the effectiveness of enzymatic hydrolysis of lignocellulosic waste, depending on their initial depolymerisation in alkaline medium were considered in the context of the possibility of their further use in the fermentation media focused on the recovery of energy in the form of molecular hydrogen. The aim of this study was to determine the appropriate dose and concentration of a chemical reagent, whose efficiency would be high enough to cause decomposition of the complex, but without an excessive production of by-products which could adversely affect the progress and effectiveness of the enzymatic hydrolysis and fermentation. The effect of treatment on physical-chemical changes of homogenates’ properties such as pH, COD, the concentration of monosaccharide and total sugars and the concentration of total suspended solids and volatile suspended solids was determined. The enzymatic decomposition of lignocellulosic complex was repeatedly more efficient if the sample homogenates were subjected to an initial exposure to NaOH. The degree of conversion of complex sugars into simple sugars during enzymatic hydrolysis of homogenates pre-alkalized to pH 11.5 and 12.0 was 83.3 and 84.2% respectively, which should be sufficient for efficient hydrogen fermentation process.
PL
Przedstawiane wyniki badań nad efektywnością hydrolizy enzymatycznej odpadów lignocelulozowych w zależności od ich wstępnej depolimeryzacji w środowisku alkalicznym rozpatrywano w kontekście możliwości ich dalszego wykorzystania w procesie fermentacji, ukierunkowanej na odzysk nośnika energii w postaci wodoru cząsteczkowego. Celem badań było ustalenie odpowiedniej dawki i stężenia reagenta chemicznego, którego skuteczność byłaby na tyle duża by powodować dekompozycję kompleksu bez nadmiernego wytwarzania produktów ubocznych, mogących niekorzystnie wpływać na przebieg i efektywność hydrolizy enzymatycznej oraz samej fermentacji. Określano wpływ obróbki fi zyczno-chemicznej na zmiany takich właściwości homogenatów jak pH, ChZT, stężenie monosacharydów i cukrów ogólnych oraz stężenie zawiesin ogólnych i organicznych. Proces enzymatycznego rozkładu kompleksu lignocelulozowego był wielokrotnie efektywniejszy w przypadku, gdy próbki homogenatów poddawano wstępnej ekspozycji na działanie NaOH. Stopień konwersji cukrów złożonych do cukrów prostych podczas enzymolizy homogenatów wstępnie alkalizowanych do pH 11,5 i 12,0 wynosił odpowiednio 83,3 i 84,2 %.
Rocznik
Strony
103--113
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
  • Department of Chemistry, Water and Wastewater Technology, Faculty of Engineering and Environmental Protection, Czestochowa University of Technology, Dąbrowskiego 69, 42-200 Czestochowa, Poland
  • Department of Chemistry, Water and Wastewater Technology, Faculty of Engineering and Environmental Protection, Czestochowa University of Technology, Dąbrowskiego 69, 42-200 Czestochowa, Poland
Bibliografia
  • [1] Boyles D. (1984). Bioenergy technology-thermodynamics and costs, New York, Wiley 1984.
  • [2] Doi T., Matsumoto H., Abe J. & Morita S. (2010). Application of rice rhizosphere microflora for hydrogen production from apple pomace, International Journal of Hydrogen Energy, 35, 7369-7376.
  • [3] Argum H. & Kargi F. (2010). Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hydrid bioreactor, International Journal of Hydrogen Energy, 35, 6170-6178.
  • [4] Balat H. & Kirtay E. (2010). Hydrogen from biomass-present scenario and future prospects, International Journal of Hydrogen Energy, 35, 7416-7426.
  • [5] Huang L. & Forsberg C.W. (1990). Cellulose digestion and cellulose regulation and distribution in Fibrobacter succinogenes subsp. succinogenes S85, Applied and Environmental Microbiology, 56, 1221-1228.
  • [6] Levin D.B., Islam R., Cicek N. & Sparling R. (2006). Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates, International Journal of Hydrogen Energy, 31, 1496-1503.
  • [7] Adav S.S., Lee D.J., Wang A.J. & Ren N.Q. (2009). Functional consortium for hydrogen production from cellobiose: concentration-to-extinction approach, Bioresource Technology, 100, 2546-2550.
  • [8] Ren Z., Ward T.E., Logan B.E. & Regan J.M. (2007). Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species, Journal of Applied Microbiology, 103, 2258-2266.
  • [9] Fan Y., Zhang G., Guo X., Xing Y. & Fan M. (2005). Biohydrogen production from beer lees biomass by cow dung compost, Biomass Bioenergy, 31, 493-496.
  • [10] Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y. & Holtzapple M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology, 96, 673-686.
  • [11] Adsul M.G., Bastawde K.B., Varma A.J. & Gokhale D.V. (2007). Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production, Bioresource Technolgy, 98, 1467-1473.
  • [12] Saratale G.D., Chen S.D., Lo Y.C., Saratale R.G. & Chang J.S. (2008). Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review, Journal of Scientific & Industrial Research, 67, 962-979.
  • [13] Wen Z., Liao W. & Chen S. (2004). Hydrolysis of animal manure lignocellulosics for reducing sugar production, Bioresource Technology, 91, 31-39.
  • [14] Singhania R.R., Sukumaran R.K. & Pandey A. (2007). Improved cellulose production by Trichoderma reesei RUT C-30 under SSF through process optimization, Applied Biochemistry and Biotechnology, 142, 1, 60-70.
  • [15] Datar R., Huang J., Maness P.C., Mohagheghi A., Czernik S. & Chorent E. (2007). Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process, International Journal of Hydrogen Energy, 32, 932-939.
  • [16] Ho K.L., Chen Y.Y. & Lee D.J. (2010). Biohydrogen production from cellobiose in phenol and cresol - containing medium using Clostridium sp. R1, International Journal of Hydrogen Energy, 35, 10239-10244.
  • [17] Wyman C.E., Dale B.E., Elander R.T., Holtzapple M., Ladisch M.R. & Lee Y.Y. (2005). Coordinated development of leading biomass pretreatment technologies, Bioresource Technology, 96, 1959-1966.
  • [18] Kaar W.E. & Holtzapple M.T. (2000). Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover, Biomass and Bioenergy, 18, 189-199.
  • [19] Kim S. & Holtzapple M.T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover, Bioresource Technology, 96, 1994-2006.
  • [20] Weemaes M.P.J. & Verstraete W.H. (1998). Evaluation of current wet sludge disintegration techniques, Journal of Chemical Technology and Biotechnology, 73, 83-92.
  • [21] Kim J., Park C. & Kim T.H. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, Journal of Bioscience and Bioengineering, 95, 271-275.
  • [22] Zhang M., Fan Y., Xing Y., Pan C., Zhang G. & Lay J.J. (2007). Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures, International Journal of Hydrogen Energy, 31, 250-254.
  • [23] Xiao B.Y. & Liu J.X. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge, Chinese Science Bulletin, 54, 12, 2038- 2044.
  • [24] Chen C.C., Lin C.Y. & Lin M.C. (2012). Acid-base enrichment enhances anaerobic hydrogen production process, Applied Microbiology and Biotechnology, 58, 224-228.
  • [25] Cai M.L., Liu J.X. & Wei Y.S. (2004). Enhanced biohydrogen production from sewage sludge with alkaline pretreatment, Environmental Science & Technology, 38, 3195-3202.
  • [26] Muller J.A. (2001). Prospects and problems of sludge pre-treatment processes, Water Science and Technology, 44, 121-128.
  • [27] Xiao B.Y. & Liu J.X. (2006). pH dependency of hydrogen fermentation from alkaline pretreated sludge, Chinese Science Bulletin, 51, 399-404.
  • [28] Kim S.H. & Shin H.S. (2008). Effects of base-pretreatment on continuous enriched culture of hydrogen production from food waste, International Journal of Hydrogen Energy, 33, 5266-5274.
  • [29] Shin H. & Youn J. (2005). Conversion of food waste into hydrogen by thermophilic acidogenesis, Biodegradation, 16, 1, 33-44.
  • [30] Wang X. & Zhao Y. (2009). A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process, International Journal of Hydrogen Energy, 34, 245-254.
  • [31] Lay J., Fan K., Hwang J., Chang J. & Hsu P. (2005). Factors affecting hydrogen production from food wastes by Clostridium-rich composts, Journal of Environmental Engineering, 131, 595-602.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b73b6391-7252-4460-ac82-29dc2d803891
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.