Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove the existence and uniqueness of a global decaying solution to the initial boundary value problem for the quasilinear wave equation with Kelvin-Voigt dissipation and a derivative nonlinearity. To derive the required estimates of the solutions we employ a ‘loan’ method and use a difference inequality on the energy.
Czasopismo
Rocznik
Tom
Strony
569--590
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Kyushu University Faculty of Mathematics Moto-oka, Fukuoka 819-0395, Japan
Bibliografia
- [1] G. Andrews, On existence of solutions to the equation utt=uxxt+(δ(ux))x, J. Differential Equations 35 (1980), 200–231.
- [2] H. Engler, Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity, Math. Z. 202 (1989), 251–259.
- [3] R. Ikehata, T. Matsuyama, M. Nakao, Global solutions to the initial-boundary value problem for the quasilinear visco-elastic wave equation with perturbation, Funk. Ekvac. 40 (1997), 293–312.
- [4] S. Kawashima, Y. Shibata, Global existence and exponential stability of small solutions to nonlinear viscoelasticity, Comm. Math. Phys. 148 (1992), 189–208.
- [5] T. Kobayashi, H. Pecher, Y. Shibata, On a global in time existence theorem of smooth solutions to nonlinear wave equations with viscosity, Math. Ann. 296 (1993), 215–234.
- [6] K. Liu, Z. Liu, Exponential decay of the energy of the Euler Bernoulli beam with locally distributed Kelvin-Voigt damping, SIAM J. Contr. Opt. 36 (1998), 1081–1095.
- [7] M. Nakao, A difference inequality and its applications to nonlinear evolution equations, J. Math. Soc. Japan 30 (1978), 747–762.
- [8] M. Nakao, Existence of global smooth solutions to the initial-boundary value problem for the quasi-linear wave equation with a degenerate dissipative term, J. Differential Equations 98 (1992), 299–327.
- [9] M. Nakao, Energy decay for the quasilinear wave equation with viscosity, Math. Z. 219 (1995), 289–299.
- [10] M. Nakao, Global existence of smooth solutions to the initial-boundary value problem for the quasi-linear wave equation with a localized degenerate dissipation, Nonlinear Analysis, T.M.A. 39 (2000), 187–205.
- [11] M. Nakao, Global existence and decay for nonlinear dissipative wave equations with a derivative nonlinearity, Nonlinear Analysis T.M.A. 75 (2012), 2236–2248.
- [12] M. Nakao, Energy decay for a nonlinear generalized Klein-Gordon equation in exterior domains with a nonlinear localized dissipative term, J. Math. Soc. Japan 64 (2012), 851–883.
- [13] M.Nakao, Existence of global decaying solutions to the exterior problem for the Klein-Gordon Equation with a nonlinear localized dissipation and a derivative nonlinearity, J. Differential Equations 255 (2013), 3940–3970.
- [14] M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical Problems in Viscoelasticity, Longman Scientific and Technical, Essex, John Wiley, New York, 1987.
- [15] Y. Yamada, Some remarks on the equation [formula], Osaka J. Math. 17 (1980), 303–323.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7352cbf-fefc-424e-aa8c-b2cea3f95fbf