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Abstract. We prove the existence and uniqueness of a global decaying solution to the initial
boundary value problem for the quasilinear wave equation with Kelvin-Voigt dissipation and
a derivative nonlinearity. To derive the required estimates of the solutions we employ a ‘loan’
method and use a difference inequality on the energy.
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1. INTRODUCTION

We consider the initial-boundary value problem for the quasilinear wave equations
with a strong dissipation and a derivative nonlinearity:

utt − div{σ(|∇u|2)∇u} −∆ut = f(u,∇u, ut) for (x, t) ∈ Ω× R+, (1.1)

u(x, 0) = u0(x) and ut(x, 0) = u1(x) for x ∈ Ω, and u(x, t)|∂Ω = 0, t ≥ 0,
(1.2)

where Ω is a bounded domain in RN with smooth, say C2-class, boundary ∂Ω and
σ(|∇u|2) is a function like σ = 1/

√
1 + |∇u|2, mean curvature type nonlinearity.

The viscosity term −∆ut is often called a Kelvin-Voigt type dissipation or strong
dissipation which appears in phenomena of wave propagation in a viscoelastic material
(cf. [1, 2, 6, 14]). We make the following assumption on the nonlinear term f(u,v, w).

Hypothesis A. f(u,v, w) is a C1 class function on R× RN × R and satisfies:

|f(u,v, w)| ≤ k0

(
|u|α+1 + |u|β+1|v|+ |w|γ+1

)
(1.3)
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|fu(u,v, w)| ≤ k0

(
1 + |u|α + (1 + |u|β)|v|

)
, (1.4)

|fv(u,v, w)| ≤ k0(1 + |u|β+1) (1.5)

and

|fw(u,v, w)| ≤ k0(1 + |w|γ) (1.6)

with 0 < α ≤ 4/(N − 4)+, β ≥ 0, 0 < γ ≤ min{2/(N − 2)+}, and a constant k0 > 0,
Two typical examples are f = ∇ ·G(u), a nonlinear convection, and f = |ut|γut,

a nonlinear perturbation by velocity. In fact some additional restrictions on α, β and γ
will be made in our theorem. The conditions (1.4)–(1.6) are made for the uniqueness of
solutions. These conditions can be weakened in some way, but we keep the conditions
for simplicity of the proof.

Concerning the principal part we make the following assumption.
Hypothesis B. σ(v2) is continuously differentiable in v2 ≥ 0 and satisfies

k2 ≥ σ(v2) ≥ k1 max

{
(1 + v2)−ν ,

v2∫
0

σ(τ)dτ/v2

}
(1.7)

with some ν, 0 ≤ ν < 1,

k2 ≥ σ(v2) + 2σ′(v2)v2 ≥ 0, (1.8)

and
|σ′(v2)v2| ≤ k2, (1.9)

where k1 and k2 > 0 are some constants.
Let us consider for a moment the typical case σ(|∇u|2) = 1/

√
1 + |∇u|2. In this

case Hyp. B is satisfied with ν = 1/2. We note that in this case the principal term
−div{σ(|∇u|2)∇u} is not coercive in the sense that∫

Ω

|∇u|2/
√

1 + |∇u|2dx ≥ C‖∇u‖22, C > 0,

does not hold, which causes the main difficulty in the existence problem of weak
solutions. When f ≡ 0, unperturbed problem, and N = 1 it is not difficult to show the
global existence and exponential decay of solutions due to the fact ‖∇u‖∞ ≤ C‖∆u‖2
(see [15]). The global existence of smooth solutions for the case N ≥ 2 is proved by
Pecher, Kobayashi and Shibata [5] by a careful use of semi-group theory. But in [5]
no decay property of solutions is given. In [9] we assumed that the mean curvature of
∂Ω with respect to the outward normal is nonnegative and proved that

E(t) ≡ 1

2

{
‖ut(t)‖22 +

∫
Ω

|∇u|2∫
0

σ(τ)dτdx

}
≤ C1(1 + t)−(1+4/(N−2)+), (1.10)
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where C1 is a constant depending on ‖u0‖H2
+ ‖u1‖H1

. In these papers [5, 8, 15] no
smallness condition on the initial data is imposed. When f is a power type nonlin-
earity of only u like f = |u|αu, α > 0, we can combine an argument of a modified
potential well method and the expected decay estimate (1.10) to show the existence
and uniqueness of a global solution

u(·) ∈ X2(∞) ≡ L∞([0,∞);H2 ∩H0
1 ) ∩W 1,∞

loc ([0,∞);H0
1 ) ∩W 2,2

loc ([0,∞);L2)

for each (u0, u1) ∈ H2∩H0
1 ×H0

1 if E(0) is small (see [3]). But, such a method cannot
be applied when f depends on the derivatives of u.

The object of this paper is to show the global existence and uniquness of solutions
in X2(∞) for the problem (1.1)–(1.2) where f includes derivarives of u. For this we
employ a ‘loan’ method. When f depends on ∇u in an essential manner we must
restrict ourselves to N = 1, 2, 3 for technical reasons. Otherwise we can also consider
the case of more general dimensions. For applications of the ‘loan’ method in other
situations see [8, 10–13].

We make the following assumption.
Hypothesis C. The mean curvature H(x) of ∂Ω at x ∈ ∂Ω is nonnegative.

We note that if we require more regularity on the initial data, say, (u0, u1) ∈
Hm+1 ∩H0

m×H0
m with m > N/2 and assume that ‖u0‖Hm+1

+ ‖u1‖Hm
is sufficiently

small, it is not so difficult to prove the existence of corresponding global smooth
solutions. Indeed, for such a case we can expect the boundedness of ‖∇u(t)‖∞ and
the exponential decay of the energy E(t) (cf. [4]). We can expect such a result on
global existence of smooth solutions for the quasilinear wave equation with much more
weaker dissipation (cf. [8,10]). But, in the present paper we show the global existence
of solutions in X2(∞) where we can not expect the boundedness of ‖∇u(t)‖∞ except
for the case N = 1.

2. PRELIMINARIES AND STATEMENT OF RESULT

We use only familiar function spaces and omit the definition of them. But we note
that ‖ · ‖p, 1 ≤ p, denotes the Lp(Ω) norm. We write ‖ · ‖ for ‖ · ‖2.

Theorem 2.1. Let N = 1, 2, 3 and assume Hyp. A, Hyp. B and Hyp. C. We make
the conditions on the exponents α, β and γ such that

α+ 2 >

{
0 if N = 1, 2,

3ν if N = 3,

β + 1 > 3ν(N − 2)+/(4−N)+ =

{
0 if N = 1, 2,

3ν if N = 3,

and
2ν(N − 2)+

2 + ν(N − 2)+
< γ <

4

N
.
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Let (u0, u1) ∈ H2 ∩H0
1 ×H0

1 with

‖∆u0‖ < K2.

Then there exists δ = δ(K2) > 0 such that if E(0) ≤ δ, the problem admits a unique
solution in the class X2(∞), satisfying the estimates

E(t) ≤ C(K2)(1 + t)−1−2/ν(N−2)+ and ‖∆u(t)‖ < K2,

where the decay estimate should be replaced if N = 1, 2 as follows:

E(t) ≤ C(K2)exp{−λt}, λ > 0, (N = 1)

and

E(t) ≤ C(K2,m)(1 + t)−m, (N = 2)

with any m >> 1.

Corollary 2.2. Replace condition (1.3) in Hyp. A by

|f(u,v, w)| ≤ k0

(
|u|α+1 + |w|γ+1

)
(2.1)

and replace (1.4), (1.5) and (1.6) by

|fu(u,v, w)| ≤ k0(1 + |u|α), (2.2)
|fv(u,v, w)| ≤ k0, (2.3)

and

|fw(u,v, w)| ≤ k0(1 + |w|γ), (2.4)

respectively. Assume that

(4−N)α+ 2 > 3ν(N − 2)+

and
2ν(N − 2)+

2 + ν(N − 2)+
< γ <

4

N
, γ ≤ 2/(N − 2)+.

Then the conclusion of Theorem 2.1 holds for all N ≥ 1.

To derive the decay estimate of E(t) we use the following lemma.

Lemma 2.3 ([7]). Let φ(t) be a nonnegative function on [0, T ], T > 1, such that
φ(t+ 1) ≤ φ(t) and

sup
t≤s≤t+1

φ(s)1+γ ≤ C0 (φ(t)− φ(t+ 1)) , 0 ≤ t ≤ T − 1,

with C0 > 0 and γ > 0. Then

φ(t) ≤
(

( sup
0≤s≤1

φ(s))−γ +
γ

C0
(t− 1)+

)−1/γ

, 0 ≤ t ≤ T.

(When γ = 0 we have a usual exponential decay of φ(t).)



Global solutions to the initial-boundary value problem. . . 573

3. LOCAL EXISTENCE AND UNIQUENESS

We begin with the following result concerning the local in time solutions.

Proposition 3.1. Assume Hyp. A, Hyp. B and Hyp. C, where we make the conditions

(4−N)α+ 2 > ν(N − 2), (4−N)(β + 1) > ν(N − 2)

and
0 < γ < 4/N, γ ≤ 2/(N − 2)+.

(The second condition on β should be dropped under (2.3).)
Let (u0, u1) ∈ H2 ∩H0

1 ×H0
1 and take K2,K0 such that

K0 > 1 and ‖∆u0‖ < K2.

Then there exists T = T (K2,K0, ‖∆u0‖ + ‖∇u1‖, E(0)) > 0 such that problem
(1.1)–(1.2) admits a unique solution u(t) in the class

X(T ) ≡ L∞([0, T );H2 ∩H0
1 ) ∩W 1,2([0, T );H0

1 ) ∩W 2,2([0, T );L2),

satisfying
‖∆u(t)‖ < K2, E(t) < K0E(0) if E(0) 6= 0

and

‖∇ut(t)‖2 +

T∫
0

‖utt(s)‖2ds ≤ C(K2, T ) <∞, (3.1)

where E(t) is the energy defined by (1.10).

Proof. Let {φm}∞m=1 be the basis of H2 ∩ H0
1 consisting of the eigen functions of

−∆ with the Dirichlet boundary condition. Define um(t) =
∑m
i=1 Ci(t)φi through the

solutions {Ci(t)}mi=1 of the system of ordinary differential equations

(üm, φi) + (σ(|∇um|2)∇um,∇φi) + (∇um,∇φi) = f(um,∇um, u̇m), (i = 1, . . . ,m)

where initial data are taken as

um(0) =
m∑
i=1

Ci(0)φi → u0 in H2 ∩H0
1 and u̇m(0) =

m∑
i=1

Ċi(0)φi → u1 in H0
1 .

The system admits a unique solution um(t) on an interval [0, Tm), Tm > 0. We derive
a priori estimates for um(t) independent of sufficiently large m. We define Em(t) by
E(t) with u replaced by um. Then we have, by the usual manner,

Em(t) +

t∫
0

‖∇u̇m(s)‖2ds = Em(0) +

t∫
0

f(um,∇um, u̇m, u̇m)ds (3.2)
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and

1

2
‖∆um(t)‖2 + (∇u̇m(t),∇um(t)) +

t∫
0

∫
Ω

div{σ(|∇um|2)∇u}∆umdxds =

=
1

2
‖∆um(0)‖2+

+ (∇u̇m(0),∇um(0)) +

t∫
0

‖∇u̇m(s)‖2ds−
t∫

0

(f(um,∇um, u̇m),∆um)ds.

(3.3)

Assume for a moment that

‖∆um(t)‖ ≤ K2 and Em(t) ≤ K0Em(0) (3.4)

for some interval 0 ≤ t ≤ T̃m < Tm. Note that these estimates are certainly valid for
sufficiently small T̃m and large m by our assumptions K2 > ‖∆u0‖ and K0 > 1.

By the assumption on σ, we see for u ∈ H2 ∩H0
1 ,

J(∇u) ≡ 1

2

∫
Ω

|∇u|2∫
0

σ(τ)dτdx ≥ C
∫
Ω

|∇u|2

(1 + |∇u|2)ν
dx

for a certain C > 0. Hence, setting

µ =
N − ν(N − 2)+

N + ν(N − 2)+

we have

‖∇u‖1+µ =


∫
Ω

(
|∇u|2

(1 + |∇u|2)ν

)(1+µ)/2

(1 + |∇u|2)(1+µ)ν/2dx


1/(1+µ)

≤

≤

∫
Ω

|∇u|2

(1 + |∇u|2)ν
dx

1/2∫
Ω

(1 + |∇u|2)N/(N−2)+dx

ν(N−2)+/2N

≤

≤ CJ(|∇u|)1/2(1 + ‖∆u‖ν) ≤ C(1 +K2)ν
√
E(t), 0 ≤ t ≤ T̃m.

(3.5)

Now, by our assumption on f ,∣∣∣∣
t∫

0

(f(um,∇um, u̇m), u̇m)ds

∣∣∣∣ ≤
≤ C

t∫
0

∫
Ω

(|um|α+1 + |um|β+1|∇um|+ |u̇m|γ+1)|u̇m|dxds.

(3.6)
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For simplicity of notation we write u(t) for um(t) for a moment. First we note that

‖∇u‖ ≤ C‖∇u‖1−θ01+µ ‖∆u‖θ0 ≤ CK
θ0
2 (1 +K2)ν(1−θ0)Em(t)(1−θ0)/2 (3.7)

with

θ0 =
ν(N − 2)+

2 + ν(N − 2)+
.

Each term of the right-hand side of (3.6) is estimated as follows:

I1 ≡
∫
Ω

|u|α+1|u̇|dx ≤ ‖u‖α+1
2(α+1)‖u̇‖ ≤ C‖u‖

(α+1)(1−θ1)
p ‖∆u‖(α+1)θ1‖u̇‖ ≤

≤ C‖∇u‖(α+1)(1−θ1)
1+µ ‖∆u‖(α+1)θ1‖u̇‖,

(3.8)

where p = N(1 + µ)/(N − 1− µ)+ = 2N/(N − 2)+(1 + ν)) and θ1 is determined by

{
θ1 = 0 if α+ 1 ≤ N

(ν+1)(N−2)+ ,

θ1 = (N−2)+(ν+1)−N/(α+1)
2+ν(N−2)+ , otherwise.

(Note that θ ≤ 1 since α ≤ 4/(N − 4)+.)
When 1 ≤ N ≤ 3 we see

I2 ≡
∫
Ω

|u|β+1|∇u||u̇|dx ≤ C‖u‖1+β
(β+1)N‖∆u‖‖u̇‖ ≤

≤ C‖∇u‖(β+1)(1−θ2)
1+µ ‖∆u‖(β+1)θ2‖∆u‖‖u̇‖,

(3.9)

where θ2 is determined by

{
θ2 = 0 if N = 1, 2,

θ2 = (N−2)(1+ν)−2/(β+1)
2+ν(N−2) if N = 3.

(A trivial modification is needed in (3.8) and (3.9) if N = 2.)
Finally,

I3 ≡
∫
Ω

|u̇|γ+2dx ≤ C‖u̇‖(γ+2)(1−θ3)‖∇u̇‖(γ+2)θ3 (3.10)

with θ3 = Nγ/2(γ + 2) < 1. Note that (γ + 2)θ3 < 2 by the assumption on γ.
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It follows from (3.2) and (3.5)–(3.10) that

Em(t) +
1

2

t∫
0

‖∇u̇m(s)‖2ds ≤

≤ Em(0) + C

{
K

(α+1)θ1
2 (1 +K2)ν(α+1)(1−θ1)

t∫
0

Em(s)(α+1)(1−θ1)/2+1/2ds+

+K
(β+1)θ2+1
2 (1 +K2)ν(β+1)(1−θ2)

t∫
0

Em(s)((β+1)(1−θ2)/2+1/2ds+

+

t∫
0

Em(s)(4−(N−2)γ)/(4−Nγ)ds

}
≤

(3.11)

≤ Em(0) + CT̂

{
K

(α+1)θ1
2 (K0Em(0))(α+1)(1−θ1)/2+1/2+

+K
(β+1)θ2+1
2 (1 +K2)ν(β+1)(1−θ2(K0Em(0))(β+1)(1−θ2)/2+1/2+

+ (K0Em(0))(4−(N−2)γ)/(4−Nγ)

}
, 0 ≤ t ≤ T̂ ,

(3.12)

Since K0 > 1 and all of the exponents K0E(0) appearing on the right-hand side of
(3.12) are greater than 1 we conclude from (3.12) that there exists T̂1 > 0 independent
of T̃m such that if 0 < t ≤ min{T̃m, T̂1}, then

Em(t) +
1

2

t∫
0

‖∇u̇m(s)‖2ds < K0Em(0), (3.13)

where we assume E(0) > 0. (The existence is trivial for the case E(0) = 0.)
Note that we can choose T̂1 as large as required if we take E(0) to be sufficiently

small.
We proceed to the estimation of ‖∆um(t)‖. We again write u(t) for um(t). Under

the Hyp. C the second term on the left-hand side of (3.3) is treated by integration by
parts as follows.
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Ω

div{σ(|∇u|2)∇u}∆udx =

=

∫
Ω

{
σ(|∇u|2)

N∑
i,j=1

(
∂2u

∂xi∂xj

)2

+ 2σ′(|∇u|2)

N∑
i=1

 N∑
j=1

∂u

∂xj

∂2u

∂xi∂xj

2}
dx+

+ (N − 1)

∫
∂Ω

(
∂u

∂n

)2

H(x)dS ≥ 0,

where H(x) is the mean curvature of ∂Ω at x ∈ ∂Ω with respect to the outward
normal and we have used the assumption σ(v2) + 2σ′(v2)v2 ≥ 0. Therefore, we see
from (3.3) that

1

2
‖∆u(t)‖2 − (u̇(t),∆u(t)) ≤ 1

2
‖∆u(0)‖2 − (u̇(0),∆u(0))+

+

t∫
0

∫
Ω

|f(u,∇u, u̇)||∆u|dxds.
(3.14)

The last term of (3.14) is treated as in (3.7)–(3.10) and we have

t∫
0

|f(u,∇u, u̇)||∆u|ds ≤

≤ C
t∫

0

(∫
Ω

(|u|2(α+1) + |u|2(β+1)|∇u|2 + |u̇|2(γ+1))dx

)1/2

‖∆u(s)‖ds ≤

≤ CK(α+1)θ1+1
2 (1 +K2)(α+1)ν((1−θ1)

t∫
0

Em(s)(α+1)(1−θ1)/2ds+

+ CK
(β+1)θ2+1
2 (1 +K2)ν(β+1)(1−θ2)

t∫
0

Em(s)(β+1)(1−θ2)/2ds+

+ CK2

( t∫
0

E(s)(2−(N−2)γ)/(4−Nγ)ds

)1−Nγ/4( t∫
0

‖∇u̇(s)‖2ds
)Nγ/4

,

(3.15)

where we have used the assumption 0 < γ < 4/N and 0 < γ ≤ 2/(N − 2)+ in the
treatment of the last term. It follows from (3.14) and (3.15) that
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‖∆u(t)‖2 ≤ ‖∆u(0)‖+ 4K2

√
K0Em(0)+

+ CK
(α+1)θ1+1
2 (1 +K2)ν(α+1)((1−θ1)

t∫
0

Em(s)(α+1)(1−θ1)/2ds+

+ CK
(β+1)θ2+1
2 (1 +K2)ν(β+1)(1−θ2)

t∫
0

Em(s)(β+1)(1−θ2)/2ds+

+ CK2 (K0Em(0))
Nγ/4

 t∫
0

Em(s)(2−(N−2)γ)/(4−Nγ)ds

1−Nγ/4

≤

≤ ‖∆u(0)‖+ 4K2

√
K0Em(0)+

+ CtK
′α+1)θ1+1
2 (1 +K2)ν(α+1)(1−θ1) (K0Em(0))

(α+1)(1−θ1)/2
+

+ CtK
(β+1)θ2+1
2 (1 +K2)ν(β+1)(1−θ2) (K0Em(0))

(β+1)(1−θ2)/2
+

+ CtK2 (K0Em(0))
Nγ/4

(K0Em(0))
(2−(N−2)γ)/4

, 0 ≤ t < min{T̃m, T̂1}.

Since ‖∆u(0)‖ < K2, we see from (3) that there exists T̂2 (≤ T̂1) independent of
T̃m and large m such that

sup
m>>1

‖∆um(t)‖ < K2 for 0 ≤ min{T̃m, T̂2}. (3.16)

Note that T̂2 can be chosen as large as we want if we take E(0) to be sufficiently small.
We conclude from (3.13) and (3.16) that the solutions um(t),m >> 1, in fact exists
on [0, T̂2], that is, we may assume Tm > T̃m > T̂2, and they satisfy the estimates

sup
m>>1

Em(t) < K0E(0) and sup
m>>1

‖∆um(t)‖ < K2, 0 ≤ t ≤ T̂2. (3.17)

We write T̂ = T̂2. Recall that

K0 > 1 and ‖∆u(0)‖ < K2.

We fix K0 and K2 arbitrarily. Further we take arbitrary T̂ > 1. Then we can conclude
that there exists δ0 = δ0(K2,K0, T̂ ) > 0 such that if E(0) < δ0, the solutions um,m
large, exist on [0, T̂ ] and the estimates in (3.17) hold on [0, T̂ ].

Further, multiplying the equation by utt(t) and integrating we have

‖utt‖2 +
1

2

d

dt
‖∇ut(t)‖2 ≤

≤
∫
Ω

|div{σ(|∇u‖2)∇u}||utt|dx+

+

∫
Ω

|f(u,∇u, ut)||utt|dx ≤

≤ C
∫
Ω

{
2|σ′(|∇u|2)||∇u|2|D2u|+ σ(|∇u|2)|∆u|

}
|utt|dx+

∫
Ω

|f(u,∇u, ut)||utt|dx

(3.18)
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which implies

t∫
0

‖utt(s)‖2ds+ ‖∇ut(t)‖2 ≤ ‖∇ut(0)‖2 + C

t∫
0

‖∆u(t)‖2 +

∫
Ω

|f(u,∇u, ut)|2dx ≤

≤ ‖∇ut(0)‖+ q1(K2)T̂ <∞, 0 ≤ t ≤ T̂ .
(3.19)

with some quantity q(K2). Now, it is a standard argument to show that the limit of
um(t) as m→∞ becomes the desired solution in X2(T̂ ). Now we change the notation
T̂ by T . The proof of the existence part of local in time solutions is complete.

Finally, we prove the uniqueness of the local solutions. Let u, v be two solutions
with the same initial data and set w = u− v. We may assume that both of solutions
satisfy the estimates which have been proved for u in the above. Then multiplying
the difference of two equations by w we easily see,

d

dt

(
(wt, w) +

1

2
‖∇w(t)‖2

)
+

∫
Ω

(σ(|∇u|2)∇u− σ(|∇v|2)∇v)∇wdx =

= ‖wt(t)‖2 +

∫
Ω

(f(u,∇u, ut)− f(v,∇v, vt))wdx ≤

≤ ‖wt(t)‖2 + C

∫
Ω

(
(1 + |u|α + |v|α)|w|2 + (1 + |u|β + |v|β)(|∇u|+ |∇v|)|w|2 +

+(1 + |u|β+1 + |v|β+1)|∇w||w|+ (1 + |ut|γ + |vt|γ)|wt||w|
)
dx ≤

≤ ‖wt(t)‖2 + C(K2)‖∇w‖2 + C(1 + ‖∇ut‖γ + ‖∇vt‖γ)‖∇wt‖‖w‖.
(3.20)

Note that the second term of the left-hand side of (3.20) is nonnegative and hence,
integrating (3.20) and using (3.19) we have

(wt(t), w(t)) +
1

2
‖∇w(t)‖2 ≤

≤
t∫

0

‖wt(s)‖2ds+ C(K2, T )

t∫
0

(‖∇w(s)‖2 + ‖∇wt(s)‖‖∇w(s)‖)ds

and hence

‖w(t)‖2 +

t∫
0

‖∇w(s)‖2ds ≤

≤ 2t

t∫
0

‖wt(s)‖2ds+ C(K2, T )

t∫
0

(‖∇w(s)‖2 + ‖∇wt(s)‖2)ds, 0 ≤ t ≤ T.

(3.21)



580 Mitsuhiro Nakao

Next, multiplying the difference of two equations by wt(t) and integrating we have
easily,

1

2
‖wt(t)‖2 +

t∫
0

‖∇wt(s)‖2ds ≤
t∫

0

{∫
Ω

|(σ(|∇u|2)∇u− σ(|∇v|2)∇v)∇wt|dx

}
ds+

+

t∫
0

{∫
Ω

(f(u,∇u, ut)− f(v,∇v, vt))wtdx

}
ds ≤

≤ C
t∫

0

‖∇w(s)‖‖∇wt(s)‖ds+

+ C(K2)

t∫
0

(‖∇w(s)‖‖wt(s)‖+ ‖∇wt(s)‖‖wt(s)‖) ds

and hence

‖wt(t)‖2 +

t∫
0

‖∇wt(s)‖2ds ≤ C(K2)

t∫
0

(‖∇w(s)‖2 + ‖wt(s)‖2)ds. (3.22)

It follows from (3.21) and (3.22) that for any k > 0,

‖w(t)‖2 + k‖wt(t)‖2 +

t∫
0

(‖∇w(s)‖2 + k‖∇wt(s)‖2)ds ≤

≤ 2t

t∫
0

‖wt(s)‖2ds+ C(K2, T )

t∫
0

(‖∇w(s)‖2 + ‖∇wt(s)‖2)ds+

+ kC(K2)

t∫
0

(‖∇w(s)‖2 + ‖wt(s)‖2)ds.

(3.23)

We take k = 1/(C(K2) + 1) and T2 = min{T, k/C(K2, T )}. Then, by (3.23), we
deduce that

‖w(t)‖2 + k‖wt(t)‖2 ≤ (2T2 + 1)

t∫
0

‖wt(s)‖2ds, 0 ≤ t ≤ T2, (3.24)

which implies wt(t) = 0 and hence w(t) = 0, 0 ≤ t ≤ T2. Repeating this argument we
conclude w(t) = 0, 0 ≤ t ≤ T. Thus uniqueness is proved.

Remark 3.2. Without Hyp. C we can prove a similar local existence and uniqueness
result as in Proposition 3.1. But, in this case, in order to take the existence time T
to be large we must assume that both of K2 and E(0) are sufficiently small.
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4. A DIFFERENCE INEQUALITY

We takeK2 such that ‖∆u(0)‖ < K2. The solution u(t) exists on [0, T ) for some T > 1
under a smallness condition E(0) < δ0 = δ0(K2). Further we know E(t) < K0E(0)
on [0, 1] if E(0) 6= 0. We may assume that

‖∆u(t)‖ ≤ K2 and E(t) ≤ K0E(0) (4.1)

on some interval [0, T̃ ], 1 < T̃ < T. If we can derive the estimates

‖∆u(t)‖ < K2 and E(t) < K0E(0), 0 ≤ t ≤ T̃ , (4.2)

we can conclude that estimates (4.1) in fact hold on the interval [0, T ), and con-
sequently the solution in fact exists on the whole interval [0,∞). We call such an
argument a ‘loan’ method.

Multiplying the equation by ut and integrating we have

t+1∫
t

‖∇ut(s)‖2ds = E(t)−E(t+ 1) +

t+1∫
t

∫
Ω

Futdxds ≡ D(t)2, 0 ≤ t ≤ T̃ − 1, (4.3)

where we set F = f(u,∇u, ut). We derive the following inequality.

Proposition 4.1.

sup
t≤s≤t+1

E(s) +

t+1∫
t

‖∇ut(s)‖2ds ≤

≤ q(K2)D(t)2/(1+θ0)+

+ CD(t)2 + C

t+1∫
t

(∫
Ω

|F |(|u|+ |ut|)dx
)
ds, 0 ≤ t ≤ T̃ − 1,

(4.4)

where q(K2) is a certain positive constant depending on K2.

Proof. We use the argument as in [9]. We know from (4.3) that there exist t1 ∈
[t, t+ 1/4], t2 ∈ [t+ 3/4, t+ 1] such that

‖ut(ti)‖ ≤ C‖∇ut(ti)‖ ≤ 4CD(t)2, i = 1, 2. (4.5)

Next, multiplying the equation by u and integrating we have

t2∫
t1

∫
Ω

σ(|∇u|2)|∇u|2dx

 ds =

=
∑
i=1,2

±(ut(ti), u(ti)) +D(t)2 +

t2∫
t1

(∇ut,∇u)ds+

t2∫
t1

∫
Ω

Fudxds.

(4.6)
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Recall that

J(∇u) ≡ 1

2

∫
Ω

( |∇u|2∫
0

σ(η)dη

)
dx ≤ C

∫
Ω

σ(|∇u|2)|∇u|2dx

and
E(t) =

1

2
‖ut(t)‖2 + J(∇u).

We already know that

J(∇u) ≥ C(1 +K2)−2ν‖∇u(t)‖21+µ

and

‖∇u(t)‖ ≤ C‖∇u(t)‖1−θ01+µ ‖∆u(t)‖θ0 ≤

≤ CKθ0
2 (1 +K2)(1−θ0)ν sup

t≤s≤t+1
E(s)(1−θ0)/2,

where

µ =
N − ν(N − 2)+

N + ν(N − 2)+
and θ0 =

ν(N − 2)+

2 + ν(N − 2)+
.

Thus,

|(ut(ti), u(ti)| ≤ C‖ut(ti)‖‖∇u(ti)‖ ≤
≤ CKθ0

2 (1 +K2)(1−θ0)νD(t) sup
t≤s≤t+1

E(s)(1−θ0)/2

and

∣∣∣ t2∫
t1

(∇ut,∇u)dx
∣∣∣ ≤ C

 t2∫
t1

‖∇ut(s)‖2ds

1/2 t2∫
t1

‖∇u(s)‖2ds

1/2

≤

≤ CKθ0
2 (1 +K2)(1−θ0)νD(t) sup

t≤s≤t+1
E(s)(1−θ0)/2.

Therefore we see from (4.3), (4.5) and (4.6) that

t2∫
t1

E(s)ds ≤ q1(K2)D(t) sup
t≤s≤t+1

E(s)(1−θ0)/2+

+D(t)2 +

t+1∫
t

∫
Ω

|F |(|u|+ |ut|)dx

 ds ≡ A(t)2

with a certain constant q1(K2), which implies

E(t∗) ≤ 2A(t)2
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for some t∗ ∈ [t1, t2], and hence, by energy identity (see (3.2)),

sup
t≤s≤t+1

E(s) ≤ E(t∗) +

t+1∫
t

‖∇ut(s)‖2ds+

+

t+1∫
t

∫
Ω

|Fut|dxds ≤

≤ 2q1(K2)D(t) sup
t≤s≤t+1

E(s)(1−θ0)/2 +D(t)2+

+ 2

t+1∫
t

(∫
Ω

|F |(|u|+ |ut|)dx
)
ds.

(4.7)

Inequality (4.7) easily yields the desired inequality (4.4).

5. BOUNDEDNESS AND DECAY OF E(t) ON [0, T̃ ]

From difference inequality (4.4) we first derive the boundedness of E(t), 0 ≤ t ≤ T̃ .
Assume that E(t) ≤ E(t + 1) for some t, 0 ≤ t ≤ T̃ − 1. Then, inequality (4.4)

implies

sup
t≤s≤t+1

E(s) +

t+1∫
t

‖∇ut(s)‖2ds ≤

≤ q(K2)

 t+1∫
t

∫
Ω

|F ||ut|dxds

1/(1+θ0)

+ C

t+1∫
t

∫
Ω

|F |(|u|+ |ut|)dx

 ds.

(5.1)

By the argument in the proof of Proposition 3.1 (see (3.10), (3.11)), we have

t+1∫
t

∫
Ω

|Fut|dxds ≤ CKθ1(α+1)
2 sup

t≤s≤t+1
E(s)(α+1)(1−θ1)/2+1/2+

+ CK
θ2(β+1)+1
2 sup

t≤s≤t+1
E(s)(β+1)(1−θ2)/2+1/2+

+ C sup
t≤s≤t+1

E(s)(γ+2)(1−θ3)/2ds

 t+1∫
t

‖∇ut(s)‖2
(γ+2)θ3

≡

≡ I1 + I2 + I3.

(5.2)
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Further,

t+1∫
t

∫
Ω

|Fu|dxds ≤ C sup
t≤s≤t+1

{
∫
Ω

(|u|α+2 + |u|β+2|∇u|+ |ut|γ+1|u|)dx} ≡

≡ Ĩ1 + Ĩ2 + Ĩ3.

(5.3)

Here we see

Ĩ1 ≤ C sup
t≤s≤t+1

‖∇u(s)‖(α+2)(1−θ̃1)
1+µ ‖∆u(s)‖(α+2)θ̃1 ≤

≤ CK(α+2)θ̃1
2 (1 +K2)ν(α+2)(1−θ̃1) sup

t≤s≤t+1
E(s)(α+2)(1−θ̃1)/2

(5.4)

with

θ̃1 =

{
0 if N = 1, 2,
((N−2)(ν+1)−2N/(α+1)

2+ν(N−2))+ if N ≥ 3,

and

Ĩ2 ≤ C sup
t≤s≤t+1

‖u(s)‖β+2
2(β+2)‖∇u(s)‖ ≤

≤ C sup
t≤s≤t+1

‖∇u‖(β+2)(1−θ̃2)+1‖∆u‖θ̃2(β+2) ≤

≤ CK θ̃2(β+2)+((β+2)(1−θ̃2)+1)θ0
2 (1 +K2)ν(1−θ0)(β+2)(1−θ̃2+1)×

× sup
t≤s≤t+1

E(s)((β+2)(1−θ̃2)+1)(1−θ0)/2

(5.5)

with

θ̃2 =

{
0 if N = 1, 2,

(β − 1)+/3(β + 2) if N = 3.

Further,

Ĩ3 ≤ C
t+1∫
t

‖ut‖γ+1
2N(γ+1)/(N+2)‖∇u‖ds ≤

≤ C
t+1∫
t

‖ut‖(γ+1)(1−θ̃3)‖∇ut‖(γ+1)θ̃3‖∇u‖ds ≤

≤ CKθ0
2 (1 +K2)ν(1−θ0) sup

t≤s≤t+1
E(s)(γ+1)(1−θ̃3)/2+(1−θ0)/2×

×
{ t+1∫

t

‖∇ut(s)‖2ds
}(γ+1)θ̃3/2

(5.6)

with θ̃3 = (Nγ − 2)+/2(γ + 1).
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It follows from (5.1) and (5.2)–(5.6) that

sup
t≤s≤t+1

E(s) +

t+1∫
t

‖∇ut(s)‖2ds ≤

≤ Cq(K2)(I1 + I2 + I3)1/(1+θ0) + C(I1 + I2 + I3 + Ĩ1 + Ĩ2 + Ĩ3) ≤
≤ q̃(K2){ sup

t≤s≤t+1
E(s)(α+1)(1−θ1)+1)/2(1+θ0) + sup

t≤s≤t+1
E(s)((β+1)(1−θ2)+1)/2(1+θ0)+

+ sup
t≤s≤t+1

E(s)(γ+2)(1−θ3)/(2(1+θ0)−(γ+2)θ3) + sup
t≤s≤t+1

E(s)((α+1)(1−θ1)+1)/2}+

+ sup
t≤s≤t+1

E(s)((β+1)(1−θ2)+1)/2 + sup
t≤s≤t+1

E(s)(γ+2)(1−θ3)/(2−θ3(γ+2))+

+ C{ sup
t≤s≤t+1

E(s)((α+2)(1−θ̃1)/2 + sup
t≤s≤t+1

E(s)((β+2)(1−θ̃2)+1)(1−θ0)/2+

+ sup
t≤s≤t+1

E(s)((γ+1)(1−θ̃3)+1−θ0)/(2−(γ+1)θ̃3)}+
1

2

t+1∫
t

‖∇ut(s)‖2ds

(5.7)

with a certain constant q̃(K2). We note that by our assumption on α, β and γ, all of
the exponents of E(s) appearing in the right-hand side of (5.7) are greater than 1.
Hence, using assumption E(t) ≤ K0E(0), 0 ≤ t ≤ T̃ , we obtain

sup
t≤s≤t+1

E(s) +

t+1∫
t

‖∇ut(s)‖2ds ≤

≤ Q1(K2,K0E(0)) sup
t≤s≤t+1

E(s), 0 ≤ t ≤ T̃ − 1

(5.8)

with a certain quantity Q1(K2,K0E(0)) which depends on K2 and K0E(0) con-
tinuously and Q(K2, 0) = 0. Therefore, there exists δ1(K2) > 0 such that if
K0E(0) < δ1(K2), then Q1(K2,K0E(0)) < 1 and consequently,

sup
t≤s≤t+1

E(s) ≤ 0, i.e. E(s) = 0, t ≤ s ≤ t+ 1. (5.9)

Recall that (5.9) is deduced under the assumption E(t) ≤ E(t + 1) for some t,
0 ≤ t ≤ T̃ − 1. Thus we conclude that E(t + 1) ≤ E(t) for all t, 0 ≤ t ≤ T̃ − 1.
In particular we see

E(t) ≤ sup
0≤s≤1

E(s) < K0E(0) for all t, 0 ≤ t ≤ T̃ . (5.10)

Returning to the difference inequality (4.4) and using the above fact we obtain

sup
t≤s≤t+1

E(s) +

t+1∫
t

‖∇ut(s)‖2ds ≤ q(K2)D0(t)2/(1+θ0) + CD0(t)2+
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+CQ1(K2,K0E(0)) sup
t≤s≤t+1

E(s), 0 ≤ t ≤ T̃ − 1,

where we set
D0(t)2 = E(t)− E(t+ 1).

There exists δ2(K2) > 0 such that if K0E(0) < δ2(K2), we have

CQ1(K2,K0E(0)) ≤ 1

2
. (5.11)

(We may assume δ2 < δ1.)
Then we conclude that if K0E(0) < δ2(K2),

sup
t≤s≤t+1

E(s) +

t+1∫
t

‖∇ut(s)‖2ds ≤ C(K2){D0(t)2/(1+θ0) +D0(t)2}, 0 ≤ t ≤ T̃ − 1.

(5.12)
For simplicity we may assume K0E(0) ≤ 1, and hence (5.12) implies

sup
t≤s≤t+1

E(s)1+θ0 ≤ C(K2)(E(t)− E(t+ 1)). (5.13)

Applying Lemma 1.1 to (5.12) we arrive at the decay estimate of E(t),

E(t) ≤
(
(K0E(0))−θ0 + C(K2)−1θ0(t− 1)+

)−1/θ0
, 0 ≤ t ≤ T̃ . (5.14)

When N = 1 (5.14) should be changed to the exponential decay

E(t) ≤ C(K2)E(0)e−λt

for some λ > 0 independent of E(0), and when N = 2 we have

E(t) ≤
(

(K0E(0))−1/m + C(K2)−1m(t− 1)+
)−m

, 0 ≤ t ≤ T̃

for arbitrarily large m >> 1.

6. ESTIMATION OF ‖∆u(t)‖ ON [0, T̃ ] AND COMPLETION
OF THE PROOF OF THEOREM 2.1

We proceed to the estimation of ‖∆u(t)‖ under the assumption (4.1).
Multiplying the equation by −∆u(t) and integrating we know (see (3.14)) that

‖∆u(t)‖2 ≤ ‖∆u(0)‖2 + 2
√
K0E(0)K2+

+ C

t∫
0

∫
Ω

(|u|α+1 + |u|β+1|∇u|+ |ut|γ+1|)|∆u|dxds.
(6.1)
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We know also (see (3.15))
t∫

0

∫
Ω

|u|α+1|∆u|dxds ≤

≤ CKθ1(α+1)+1
2 (1 +K2)2ν(1−θ1)(α+1)

t∫
0

E(s)(1−θ1)(α+1)/2ds ≤

≤ CK(α+1)θ1+1
2 (1 +K2)ν(α+1)(1−θ1)

t∫
0

(
(K0E(0))−θ0+

+ C(s− 1)+
)−(α+1)(1−θ1)/2θ0

ds ≤

≤ CK(α+1)θ1+1
2 (1 +K2)(α+1)ν(1−θ1)

(
(K0E(0))(α+1)(1−θ1)/2+

+ (K0E(0))(α+1)(1−θ1)/2−θ0
)
,

(6.2)

where we have used the fact

(α+ 1)(1− θ1)/2− θ0 > 1/2 > 0.

Similarly,
t∫

0

∫
Ω

|u|β+1|∇u||∆u|dxds ≤

≤ CK(β+1)θ2
2 (1 +K2)ν(β+1)(1−θ2)

t∫
0

E(s)(β+1)(1−θ2)/2ds ≤

≤ CK(β+1)θ2+1
2 (1 +K2)ν(β+1)(1−θ2)(K0E(0))(β+1)(1−θ2)/2+

+ (K0E(0))(β+1)(1−θ2)/2−θ0 .

(6.3)

The treatment of the last term of (6.1) is also similar. We have
t∫

0

∫
Ω

|ut|γ+1|∆u|dxds ≤ CK2

t∫
0

‖ut(s)‖γ+1
2(γ+1)ds ≤

≤ CK2

 t∫
0

E(s)(2γ+2−Nγ)/(4−Nγ)ds

1−Nγ/4 t∫
0

‖∇ut(s)‖2ds

Nγ/4

.

(6.4)

Here, using the fact (2γ + 2−Nγ)/(4−Nγ)θ0 > 1, we have
t∫

0

E(s)(2γ+2−Nγ)/(4−Nγ)ds ≤

≤ (K0E(0))(2γ+2−Nγ) + C(K0E(0))(2+2γ−Nγ)/(4−Nγ)−θ0 .

(6.5)
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Further (see (3.11)),
t∫

0

‖∇ut(s)‖2ds ≤

≤ 2E(0)+

+C

{
K

(α+1)θ1
2

t∫
0

E(s)(α+1)(1−θ1)/2+1/2ds+

+ CK
(β+1)θ2+θ0
2 (1 +K2)ν(β+1)(1−θ0)

t∫
0

E(s)((β+1)(1−θ2)+1)/2ds+

+ CK2

t∫
0

E(s)(4−(N−2)γ)/(4−Nγ)ds

}
≤

≤ 2E(0) + CK
(α+1)θ1
2

(
(K0E(0))((α+1)((1−θ1)+1)/2θ0+

+ (K0E(0))((α+1)(1−θ1)+1)/2−θ0
)

+

+ CK
(β+1)θ2+θ0
2 (1 +K2)ν(β+1)(1−θ0

(
(K0E(0))((β+1)(1−θ2)+1)/2θ0 +

+C(K0E(0))((β+1)(1−θ2)+1)/2−θ0
)

+

+ C
(

(K0E(0))(4−(N−2)γ)/(4−Nγ)θ0 + (K0E(0))(4−(N−2)γ)/(4−Nγ)−θ0
)
.

(6.6)

Note that all of the exponents of K0E(0) appearing in (6.2), (6.5) and (6.6) are all
positive. Thus we conclude from (6.1) that

‖∆u(t)‖2 ≤ ‖∆u(0)‖2 +Q2(K2,K0E(0)), 0 ≤ t ≤ T̃ , (6.7)

where Q2(K2,K0E(0)) is a certain quantity depending on K0E(0) and K2 continu-
ouesly and satisfying Q2(K2, 0) = 0. Therefore, under the assumption ‖∆u(0)‖ < K2,
there exists δ3 = δ3(K2) > 0 such that if K0E(0) < δ3, then

‖∆u(t)‖ < K2, 0 ≤ t ≤ T̃ . (6.8)

(We may assume that δ3(K2) < δ2(K2) < δ1(K2).)
Now under the asumptions E(t) ≤ K0E(0) and ‖∆u(t)‖ ≤ K2 on [0, T̃ ] we have

derived the estimates

E(t) < K0E(0) and ‖∆u(t)‖ < K2, 0 ≤ t ≤ T̃ ,

provided that 0 < E(0) < δ3(K2)/K0.
We fix K0 > 1. Then, if E(0) < δ3(K2)/K0 ≡ δ(K2) we can conclude that the

solution in fact exists on the whole interval [0,∞) and all of the estimates derived on
[0, T̃ ] so far are valid on [0,∞). The proof of Theorem 2.1 is now complete. The proof
of Corollary 2.2 is also included in the above argument.
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