PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Abrasive Wear Mechanisms of S235JR, S355J2, C45, AISI 304, and Hardox 500 Steels Tested Using Garnet, Corundum and Carborundum Abrasives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wear resistance is one of the main indicators of the reliability of machine parts. The selection of wear-resistant material should consider the operational environment and specific types of abrasive material. The steel abrasive wear resistance depends not only on its hardness and microstructure but also on the abrasive material's properties, such as hardness and particle morphology. This work aimed to determine abrasion wear mechanisms of a set of steels, i.e., S235, S355, C45, AISI 304 and Hardox 500, abraded by different types of grit i.e. garnet, corundum and carborundum. The abrasion tests were conducted using T-07 tribometer (rubber wheel method). Wear traces were examined with a scanning electron microscope (SEM), and a contact profilometer. SEM analysis revealed that apart from Hardox 500, ploughing and microfatigue were the dominant wear mechanisms. Microcutting was the main wear mechanism for Hardox 500 tested with carborundum (SiC). The highest mass loss was usually obtained for carborundum. The lowest wear resistance in garnet and carborundum was obtained for the S235JR and S235J2 steels and Hardox 500 tested with corundum. The effect of steel microstructure on the wear mechanism has been confirmed. AISI 304 austenitic steel abraded by carborundum grit, presented outstanding roughness parameters: Ra, Rz, RSm, Rk, Rvk and Rpk than other steels tested with carborundum. Steel hardness affects the morphology of the wear trace reducing the Ra and Rz roughness parameters. The effect of abrasive hardness and grain morphology on abraded surfaces has been stated. Contrary to fine grains of the hardest carborundum, coarse garnet grains caused high roughness parameters (Rk, Rpk and Rvk) determined in wear trace.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Mechanical Science Institute, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, Vilnius LT-03224, Lithuania
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Drozd K., Walczak M., Szala M., Gancarczyk K. Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades. Materials 2020; 13(21). https://doi.org/10.3390/ma13214895.
  • 2. Karumuri S., Das C., Krishna Mallarapu G. Tribological Properties of Al 7075 Composite Reinforced with ZrB2 Using Grey Relational Analysis. Advances in Science and Technology Research Journal 2022; 16(4): 22–28. https://doi.org/10.12913/22998624/152020.
  • 3. Walczak M., Szala M., Pieniak D. Effect of Water Absorption on Tribological Properties of Thermoplastics Matrix Composites Reinforced with Glass Fibres. Advances in Science and Technology Research Journal 2022; 16(2): 232–239. https://doi.org/10.12913/22998624/147515.
  • 4. Morozow D., Siemiątkowski Z., Gevorkyan E., Rucki M., Matijošius J., Kilikevičius A., Caban J., Krzysiak Z. Effect of Yttrium and Rhenium Ion Implantation on the Performance of Nitride Ceramic Cutting Tools. Materials 2020; 13(20). https://doi.org/10.3390/ma13204687.
  • 5. Nana Sekyi Appiah A., Bialas O., Czupryński A., Adamiak M. Powder Plasma Transferred Arc Welding of Ni-Si-B+60 wt%WC and Ni-Cr-Si-B+45 wt%WC for Surface Cladding of Structural Steel. Materials 2022; 15(14). https://doi.org/10.3390/ma15144956.
  • 6. Nana Sekyi Appiah A., Bialas O., Żuk M., Czupryński A., Konadu Sasu D., Adamiak M. Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology. Materials Science-Poland 2022; 40(3): 42–63. https://doi.org/10.2478/msp-2022–0033.
  • 7. Hejwowski T., Szala M. Wear-Fatigue Study of Carbon Steels. Advances in Science and Technology Research Journal 2021; 15(3): 179–190. https://doi.org/10.12913/22998624/140200.
  • 8. Xu X., Xu W., Hipgrave Ederveen F., van der Zwaag S. Design of low hardness abrasion resistant steels. Wear 2013; 301: 89–93. http://dx.doi.org/10.1016/j.wear.2013.01.002.
  • 9. Albertin E., Sinatora A. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory mill. Wear 2001; 250: 492–501. https://doi.org/10.1016/S0043–1648(01)00664–0.
  • 10. Turenne S., Lavallée F., Masounave J. Matrix microstructure effect on the abrasive wear resistance of high-chromium white cast iron. Journal of Materials Science 1989; 24: 3021–3028. https://doi.org/10.1007/BF02385662.
  • 11. Movassagh-Alanagh F., Mahdavi M. Improving wear and corrosion resistance of AISI 304 stainless steel by a multilayered nanocomposite Ti/TiN/TiSiN coating. Surfaces and Interfaces 2020; 18. https://doi.org/10.1016/j.surfin.2019.100428.
  • 12. Szala M., Dudek A., Maruszczyk A., Walczak M., Chmiel J., Kowal M. Effect of Atmospheric Plasma Sprayed TiO2–10% NiAl Cermet Coating Thickness on Cavitation Erosion, Sliding and Abrasive Wear Resistance. Acta Physica Polonica Series A 2019; 136(2): 335–341. https://doi.org/10.12693/APhysPolA.136.335.
  • 13. Beköz Üllen N. Investigation of the wear resistance of Hardox steel plates, Second International Conference On Tribology “TURKEYTRIB’18”, Istanbul, Turkey, 18–20 April 2018.
  • 14. Ligier K., Zemlik M., Lemecha M., Konat Ł., Napiórkowski J. Analysis of Wear Properties of Hardox Steels in Different Soil Conditions. Materials 2022; 15(21). https://doi.org/10.3390/ma15217622
  • 15. Pawlak K., Białobrzeska B., Konat Ł. The influence of austenitizing temperature on prior austenite grain size and resistance to abrasion wear of selected low-alloy boron steel. Archives of Civil and Mechanical Engineering 2016; 16: 913–926. https://doi.org/10.1016/j.acme.2016.07.003.
  • 16. Jafarian H.R., Sabzi M., Mousavi Anijdan S.H., Eivani A.R., Park N. The influence of austenitization temperature on microstructural developments, mechanical properties, fracture mode and wear mechanism of Hadfield high manganesesteel. Journal of Materials Research and Technology 2021; 10: 819–831. https://doi.org/10.1016/j.jmrt.2020.12.003.
  • 17. Białobrzeska B. The influence of boron on the resistance to abrasion of quenched low-alloy steels. Wear 2022; 500–501. https://doi.org/10.1016/j.wear.2022.204345.
  • 18. Wieczorek A. Experimental studies on the influence of abrasive materials on the wear of hardwearing steels. Tribologia 2018; 5: 133–141.
  • 19. Zhou N., Lin Peng R., Pettersson R. Surface characterization of austenitic stainless steel 304L after different grinding operations. International Journal of Mechanical and Materials Engineering 2017; 12(6). https://doi.org/10.1186/s40712–017–0074–6.
  • 20. Thakare M.R., Wharton J.A., Wood R.J.K., Menger C. Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials. Wear 2012; 276–277: 16–28. https://doi.org/10.1016/j.wear.2011.11.008.
  • 21. Wang Q., Zhang Y., Ding X., Wang S., Seshadri Ramachandran C. Effedt of WC Grain Size and Abrasive Type on the Wear Performance of HVOF-Sprayed WC-20Cr3C2–7Ni, Coatings. Coatings 2020; 10. https://doi.org/10.3390/coatings10070660.
  • 22. Kamdi Z., Shipway P.H., Voisey K.T., Sturgeon A.J. Abrasive wear behaviour of conventional and large-particle tungsten carbide-based cermet coatings as a function of abrasive size and type. Wear 2011; 271(9–10): 1264–1272. https://doi.org/10.1016/j.wear.2010.12.060.
  • 23. Yu Y., Sun T., Yuan Y., Gao H., Wang X. Experimental investigation into effect of abrasive process parameters on the cutting performance for abrasive waterjet technology: a case study. The International Journal of Advanced Manufacturing Technology 2020; 107: 2757–2765. https://doi.org/10.1007/s00170–020–05183–3.
  • 24. Vargova M., Tavodova M., Monkova K., Dzupon M. Research of Resistance of Selected Materials to Abrasive Wear to Increase the Ploughshare Lifetime. Metals 2022; 12(6). https://doi.org/10.3390/met12060940.
  • 25. Napiórkowski J., Lemecha M., Konat Ł. Forecasting the Wear of Operating Parts in an Abrasive Soil Mass Using the Holm-Archard Model. Materials 2019; 12(13). http://dx.doi.org/10.3390/ma12132180.
  • 26. Singh Mann P., Kaur Brar N. Tribological aspects of agricultural equipments: a review. International Research Journal of Engineering and Technology (IRJET) 2015; 2(3): 1704–1708. https://www.irjet.net/archives/V2/i3/Irjet-v2i3267.pdf (accessed January 22, 2023).
  • 27. Sigolo E., Soyama J., Zepon G., Shyinti Kliminami C., Botta W.J., Bolfarini C. Wear resistant coatings of boron-modified stainless steels deposited by Plasma Transferred Arc. Surface and Coatings Technology 2016; 302: 255–264. https://doi.org/10.1016/j.surfcoat.2016.06.023.
  • 28. Wirojanupatump S., Shipway P.H. Abrasion of mild steel in wet and dry conditions with the rubber and steel wheel abrasion apparatus. Wear 2000; 239(1): 91–101. https://doi.org/10.1016/S0043–1648(00)00310–0
  • 29. Szala M., Szafran M., Macek W., Marchenko S., Hejwowski T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Advances in Science and Technology Research Journal 2019; 13(4): 151–161. https://doi.org/10.12913/22998624/113244.
  • 30. Zum Gahr K.-H. Microstructure and wear of materials. Elsevier Science Ltd 1987; 80–351.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b731488d-5971-4faf-b068-a226dcbba78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.