PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical stability of retained austenite in aluminum-containing medium-Mn steel deformed at different temperatures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal and mechanical stabilities of retained austenite in aluminum-containing medium-Mn 0.16C–4.7Mn–1.6Al–0.2Si sheet steel were investigated. The strain-induced martensitic transformation in Mn TRIP steel was studied at different temperatures. Static tensile tests were carried out at the temperature ranging from − 60 to 200 °C. The tests allowed to study the influence of the temperature on austenite-to-martensite transformation kinetics. The interrupted tensile tests and corresponding X-ray measurements of retained austenite amount were performed to determine the mechanical stability of retained austenite using the Sugimoto model. The microstructure changes were investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Observed results reflected the effects of deformation temperature on the mechanical stability of retained austenite and the corresponding response of this phase to martensitic transformation. It was found that an increase in the deformation temperature resulted in the reduced intensity of the TRIP effect due to the higher mechanical stability of retained austenite. At the highest deformation temperature (200 °C), the evidence of thermally activated processes affecting the mechanical behavior was identified.
Rocznik
Strony
324--338
Opis fizyczny
Bibliogr. 59 poz., fot., rys., wykr.
Twórcy
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network-Institute for Ferrous Metallurgy, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
  • Faculty for Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 23 Stelzhamerstrasse, 4600 Wels, Austria
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] Suh WD, Kim SJ. Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scr Mater. 2017;126:63–7.
  • [2] Kokosza A, Pacyna J. Influence of austenitising temperature on kinetics of phase transformations in medium carbon TRIP steel. Mater Sci Technol. 2015;31:802–7.
  • [3] Gramlich A, Emmrich R, Bleck W. Austenite reversion tempering-annealing of 4 wt% manganese steels for automotive forging application. Metals. 2019. https://doi.org/10.3390/met9050575.
  • [4] Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Lukaszek-Solek A, Luksza J, Mróz S, Muskalski Z, Muzykiewicz W, Pietrzyk M, Sliwa RE, Tomczak J, Wiewiórowska S, Winiarski G, Zasadzinski J, Ziólkiewicz S. Recent development trends in metal forming. Arch Civil Mech Eng. 2019;19:898–941.
  • [5] Li ZC, Ding H, Misra RDK, Cai ZH. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: the effect of austenite-reverted transformation and quenching-tempering treatments. Mater Sci Eng A. 2017;682:211–9.
  • [6] Valdes-Tabernero MA, Celada-Casero C, Sabirov I, Kumar A, Petrov RH. The effect of heating rate and soaking time on microstructure of an advanced high strength steel. Mater Charact. 2019;155:109822.
  • [7] Glover A, Gibbs PJ, Liu C, Brown DW, Clausen B, Speer JG, De Moor E. Deformation behavior of a double soaked mediummanganese steel with varied martensite strength. Metals. 2019. https://doi.org/10.3390/met9070761.
  • [8] Korpała G, Hisker F, Hammer B, Heller T, Kawalla R, Prahl U. The influence of hot-rolling conditions on the content and morphology of retained austenite in ultra-high strength bainitic steel and its mechanical properties. Steel Res Int. 2019;90:1800386.
  • [9] Gronostajski Z, Niechajowicz A, Kuziak R, Krawczyk J, Polak S. The effect of the strain rate on the stress-strain curve and micro-structure of AHSS. J Mater Process Technol. 2017;242:246–59.
  • [10] Samek L, De Moor E, Penning J, Speer JG, De Cooman BC. Static strain aging of microstructural constituents in transformation-induced-plasticity steel. Metall Mater Trans A. 2008;39:2542–54.
  • [11] Xia P, Sabirov I, Molina-Aldareguia J, Verleysen P, Petrov R. Mechanical behavior and microstructure evolution of a quenched and partitioned steel during drop weight impact and punch testing. Mater Sci Eng A. 2018;737:18–26.
  • [12] Sevsek S, Haase C, Bleck W. Strain-rate-dependent deformation behavior and mechanical properties of a multi-phase medium-manganese steel. Metals. 2019. https://doi.org/10.3390/met9030344.
  • [13] Kozłowska A, Janik A, Radwański K, Grajcar A. Microstructure evolution and mechanical stability of retained austenite in medium-Mn steel deformed at different temperatures. Materials. 2019. https://doi.org/10.3390/ma12183042.
  • [14] Rusinek A, Klepaczko JR. Experiments on heat generated during plastic deformation and stored energy for TRIP steels. Mater Des. 2009;30:35–48.
  • [15] Kim H, Lee J, Barlat F, Kim D, Lee MG. Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel. Acta Mater. 2015;97:435–44.
  • [16] Rong T, Lin L, De Cooman BC, Chen WX, Peng S. Effect of temperature and strain rate on dynamic properties of low silicon TRIP steel. J Iron Steel Res Int. 2006;13:51–6.
  • [17] Asghari A, Zarei-Hanzaki A, Eskandari M. Temperature dependence of plastic in a modified transformation-twinning induced plasticity steel. Mater Sci Eng A. 2013;579:150–6.
  • [18] Li X, Wei L, Chen L, Zhao Y, Misra RDK. Work hardening behavior and tensile properties of a high-Mn damping steel at elevated temperatures. Mater Charact. 2018;144:575–83.
  • [19] Rana R, De Moor E, Speer JG, Matlock DK. On the importance of adiabatic heating on deformation behavior of medium-manganese sheet steels. JOM. 2018;70:706–13.
  • [20] Chen S, Cao Z, Wang C, Huang C, Ponge D, Cao W. Effect of volume fraction and mechanical stability of austenite on ductility of medium Mn steel. J Iron Steel Res Int. 2019;26:1209–18.
  • [21] Kozłowska A, Grzegorczyk B, Staszuk M, Nuckowski PM, Grajcar A. Analysis of plastic deformation instabilities at elevated temperatures in hot-rolled medium-Mn steel. Materials. 2019. https://doi.org/10.3390/ma12244184.
  • [22] Jabłońska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Procedia Manuf. 2019;27:91–7.
  • [23] Grajcar A, Skrzypczyk P, Kozłowska A. Effects of temperature and time of isothermal holding on retained austenite stability in medium-Mn steels. Appl Sci. 2018. https://doi.org/10.3390/app8112156.
  • [24] ASTM E8/E8M-13a. Standard test methods for tension testing of metallic materials. West Conshohocken: ASTM International; 2013.
  • [25] Samek L, De Moor E, Penning J, De Cooman BC. Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy multiphase high-strength steels. Metall Mater Trans A. 2006;37:109–23.
  • [26] ASTM E975–3. Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation. West Conshohocken: ASTM International; 2013.
  • [27] Tang ZY, Huang JN, Ding H, Cai ZH, Misra RDK. Austenite stability and mechanical properties of a low-alloyed ECAPed TRIP-aided steel. Mater Sci Eng A. 2018;724:95–102.
  • [28] Gnaupel-Herolda T, Creuziger A. Diffraction study of the retained austenite content in TRIP steels. Mater Sci Eng A. 2011;528:3594–600.
  • [29] Zou DX, Li SH, He J. Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels. Mater Sci Eng A. 2017;80:54–63.
  • [30] Pereloma EV, Gazder AA, Timokhina IB. Addressing retained austenite stability in advanced high strength steels. Mater Sci Forum. 2012;738:212–6.
  • [31] Sugimoto K, Tanino H, Kobayashi J. Impact toughness of medium-Mn transformation-induced plasticity-aided steels. Steel Res Int. 2015;86:1151–60.
  • [32] Sun B, Fazeli F, Scott C, Guo B, Aranas C, Chu X Jr, Jahazi M, Yue S. Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions. Mater Sci Eng A. 2018;729:496–507.
  • [33] Zambrano OA. Stacking fault energy maps of Fe–Mn–Al–C–Si steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol. 2016. https://doi.org/10.1115/1.4033632.
  • [34] Zhang M, Li L, Ding J, Wu Q, Wang YD, Almer J, Guo F, Ren Y. Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction. Acta Mater. 2017;141:294–303.
  • [35] Pierce DT, Jiménez JA, Bentley J, Raabe D, Oskay C, Wittig JE. The influence of manganese content on the stacking-fault and austenite/e-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory. Acta Mater. 2014;68:238–53.
  • [36] Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A. 2004;387–389:158–62.
  • [37] Wittig JE, Pozuelo M, Jiménez JA, Frommeyer G. Temperature dependent deformation mechanisms of a high-nitrogen manganese austenitic stainless steel. Steel Res Int. 2009;80:66–70.
  • [38] Chandan AK, Mishra G, Mahato B, Chowdhury SG, Kundu S, Chakraborty J. Stacking fault energy of austenite phase in medium manganese steel. Metall Mater Trans A. 2019;50:4851–66.
  • [39] Sente software Ltd. A collection of free downloadable papers on the development and application of JMatPro. 2005. http://www.sentesoftware.co.uk/biblio.html. Accessed 10 Sept 2020.
  • [40] Luo L, Li W, Wang L, Zhou S, Jin X. Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures. Mater Sci Eng A. 2017;682:698–703.
  • [41] Hu B, Luo H. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Mater. 2019;176:250–63.
  • [42] Hu B, Cheng GJ, Wei H, Ming Y, Huang X, Luo HW. Super-high-strength and formable medium Mn steel manufactured by warm rolling process. Acta Mater. 2019;174:131–41.
  • [43] Speer J, Rana R, Matlock D, Glover A, Thomas G, De Moor E. Processing variants in medium-Mn steels. Metals. 2019. https://doi.org/10.3390/met9070771.
  • [44] Tan X, Ponge D, Lu W, Xu Y, He H, Yan J, Wu D, Raabe D. Joint investigation of strain partitioning and chemical partitioning in ferrite-containing TRIP-assisted steels. Acta Mater. 2020;186:374–88.
  • [45] Tang Z, Huang J, Ding H, Cai Z, Zhang D, Misra D. Effect of deformation temperature on mechanical properties and deformation mechanisms of cold-rolled low C high Mn TRIP/TWIP steel. Metals. 2018. https://doi.org/10.3390/met8070476.
  • [46] Madivala M, Schwedt A, Wong SL, Roters F, Prahl U, Bleck W. Temperature dependent strain hardening and fracture behavior of TWIP steel. Int J Plast. 2018;104:80–103.
  • [47] Ramazani A, Bruehl S, Gerber T, Bleck W, Prahl U. Quantification of bake hardening effect in DP600 and TRIP700 steels. Mater Des. 2014;57:479–86.
  • [48] Samek L, Dykas J, De Moor E, Grajcar A. Strain-ageing of low-alloyed multiphase high-strength steels. Metals. 2020. https://doi.org/10.3390/met10040439.
  • [49] Callahan M, Huber O, Hild F, Perlade A, Schmitt JH. Coincidence of strain-induced TRIP and propagative PLC bands in medium Mn steels. Mater Sci Eng A. 2017;703:391–400.
  • [50] Sun B, Vanderesse N, Fazeli F, Scott C, Chen J, Bocher P, Jahazi M, Yue S. Discontinuous strain-induced martensite transformation related to the Portevin–Le Chatelier effect in a medium manganese steel. Scr Mater. 2017;133:9–13.
  • [51] Field DM, Van Aken DC. Dynamic strain ageing phenomena and tensile response of medium-Mn TRIP steel. Metall Mater Trans A. 2018;49:1152–66.
  • [52] Min J, Hector LG, Zhang LJ, Sund L, Carsley JE, Lin J. Plastic instability at elevated temperatures in a TRIP-assisted steel. Mater Des. 2016;95:370–86.
  • [53] Kipelova A, Kaibyshev R, Skorobogatykh V, Schenkova I. Portevin–Le Chatelier effect in an E911 creep resistant steel with 3% Co additives. J Phys Conf Ser. 2010;240:012100.
  • [54] Cottrell AH. A note on the Portevin–Le Chatelier effect. Lond Edinb Dublin Philos Mag J Sci. 1953;44:829–32.
  • [55] Owen WS, Grujicic M. Strain ageing of austenitic Hadfield manganese steel. Acta Metall. 1999;47:111–26.
  • [56] Hickel T, Sandlöbes S, Marceau RKW, Dick A, Bleskov I, Neugebauer J, Raabe D. Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater. 2014;75:147–55.
  • [57] Krizan D, De Cooman BC. Analysis of the strain-induced martensitic transformation of retained austenite in cold rolled micro-alloyed TRIP steel. Steel Res Int. 2008;79:513–22.
  • [58] Sugimoto K, Kobayashi M, Hashimoto S. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall Mater Trans A. 1992;23:3085–91.
  • [59] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int. 1992;32:1311–8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7305574-47ec-4b32-be9c-957bc75b0fbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.