PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and fabrication of Abrasive Jet Machine (AJM)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abrasive Jet Machining (AJM) is the process of material removal from a work piece by the application of a high-speed stream of abrasive particles carried in a gas or air medium from a nozzle. The material removal process is mainly by erosion. The AJM will chiefly be used to cut shapes in hard and brittle materials like glass, ceramics etc. the machine will be automated to have 3 axes travel. The different components of AJM are Compressor, Vibrator, dehumidifier, Pressure Regulator, and Dust filter, Nozzle, Pressure gauge etc. The different components are selected after appropriate design calculations. In paper contains the Abrasive Jet Machine design and fabrication by using available hardware and software etc. taking into consideration of commercially available components. Care has been taken to use less fabricated components rather than directly procuring them, because, the lack of accuracy in fabricated components would lead to a diminished performance of the machine.
Rocznik
Strony
1471--1482
Opis fizyczny
Bibliogr. 33 poz., il. kolor., fot., 1 rys.
Twórcy
  • Centurion University, Department of Mechanical Engineering, Vishakhapatnam, India
autor
  • GMR Institute of Technology, Department of Mechanical Engineering, Rajam, India
autor
  • LENDI Institute of engineering & Technology, Department of Mechanical Engineering, Vizianagaram, India
Bibliografia
  • [1] Li, C. H., Ding, Y. C., B. H. Lu.: Modeling and simulation for material removal in abrasive jet precision finishing with wheel as restraint, IEEE International Conference on Automation and Logistics, 2869-2873, 2008.
  • [2] Khan, A. A., Mohd, E. B. A., Ahmad A. B.: Surface Roughness of Carbides Produced by Abrasive Water Jet Machining, J. Appl. Sci., 5, 10, 1757-1761, 2005.
  • [3] Ghobeity, A., Spelt, J. K., Papini, M.: Abrasive jet micro-machining of planar areas and transitional slopes, J. Micromech. Microeng., 18, 5, 1-13, 2008.
  • [4] Khan, A. A., Munajat, N. B. Tajudin, H. B.: A Study on Abrasive Water Jet Machining of Aluminum with Garnet Abrasives, J. Appl. Sci., 5, 9, 1650-1654, 2005.
  • [5] Liu, F., Gong, Y.-D., Shan, Y.-Q., Cai, G.-Q.: Residual stress and tribological characteristics of ground surface after abrasive jet restricted by grinding wheel, Journal of Northeastern University, 30, 3, 422-425, 2009.
  • [6] Zhu, L. D., Yu, T. B., Yang, J. Y., Tang, L.: Simulation and analysis of abrasive jet machining with wheel restriction in grindingWang, Key Eng. Mater., 389, 387-391, 2009.
  • [7] Balasubramaniam, R., Krishnan, J., & Ramakrishnan, N.: An experimental study on the abrasive jet deburring of cross-drilled holes, J. Mater. Process. Technol., 91 1-3, 178-182 1999.
  • [8] Balasubramaniam, R., Krishnan, J., Ramakrishnan, N.: An empirical study on the generation of an edge radius in abrasive jet external deburring (AJED), J. Mater. Process. Technol, 99, 1-3, 49-53, 2000.
  • [9] Morrison, C. T., Scattergood, R. O., & Routbort, J. L.: Erosion of 304 stainless steel, Wear, 111, 1, 1-13 1986.
  • [10] Kandpal, B., Kumar, N., Kumar, R., Sharma, R., Deswal, S.: Machining of glass and ceramic with alumina and silicon carbide in abrasive jet machiningInt, J. Adv. Engg. Tech., 2, 251-256 2011.
  • [11] El-Domiaty, A., El-Hafez, H. A., Shaker, M. A.: Drilling of glass sheets by abrasive jet machining. World Academy of Science, Engineering and Technology, 32, 61-67 2009.
  • [12] Jain, V. K., Choudhury, S. K., Ramesh, K. M.: On the machining of alumina and glass, Int. J. Mach. Tools Manuf., 42, 11, 1269-1276, 2002.
  • [13] Yin, L., Ives, L. K., Jahanmir, S., Rekow, E. D., Romberg, E.: Abrasive machining of glass-infiltrated alumina with diamond burs, Machining science and technology, 5, 1, 43-61, 2001.
  • [14] Jagannatha, N., Somashekhar, S. H., Sadashivappa, K., Arun, K. V.: Machining of soda lime glass using abrasive hot air jet: An experimental study, Machining science and technology, 16, 3, 459-472 2012.
  • [15] Bhaskar, C., Jagtar, S.: A Study of effect of Process Parameters of Abrasive jet machining, Int. J. Eng. Sci. Tech., 3, 1, 2011.
  • [16] Getu, H., Ghobeity , A., Spelt, J. K., Papini, M.: Abrasivejet micromachining of polymethylmethacrylate, Wear, 263, 1008-1015, 2007.
  • [17] Chastagner, M. W., Shih, A. J.: Abrasive jet machining for edge generation, Transactions of NAMRI/SME, 35, 359-366, 2007.
  • [18] Wakuda, M., Yamauchi, Y., Kanzaki, S.: Characteristics of Abrasive Jet Machining of Silicon Nitride Ceramic, Int. J. Jpn. Soc. Precis. Eng., 67, 10, 1703-1707, 2001.
  • [19] Ghobeity, A., Getu, H., Krajac, T., Spelt, J. K., Papini, M.: Process repeatability in abrasive jet micromachining, Journal of Materials Processing Technology - j. mater. process. technol., 190, 1, 51-60, 2007.
  • [20] Moridi, A., Wang, J., Ali, Y. M., Mathew, P., Li, X. P.: A study of abrasive jet micro-grooving of quartz crystals, In Key engineering materials, 443, 645-651, 2010.
  • [21] Venkatesh, V. C.: Parametric studies on abrasive jet machining, CIRP Annals - Manufacturing Technology, 33, 1, 109-112, 1984.
  • [22] Venkatesh, V. C., et al.: An empirical study of parameters in abrasive jet machining, Int. J. Mach. Tools Manuf., 29, 4, 471-479, 1989.
  • [23] Manabu, W., Yamauchi, Y., Kanzaki, S.: Material response to particle impact during abrasive jet machining of alumina ceramics, J. Mater. Process. Technol., 132, 1-3, 177-183, 2003.
  • [24] Babu, M. K., Krishnaiah Chetty, O. V.: A study on recycling of abrasives in abrasive water jet machining, Wear , 254, 7-8, 763-773, 2003.
  • [25] Burzynski, T., Papini, M.: Measurement of the particle spatial and velocity distributions in micro-abrasive jets, Measurement Science and Technology, 22, 2, 025-104, 2011.
  • [26] D.S. Robinson Smart, Experimental Investigation of Effect of Abrasive Jet Nozzle Position and Angle on Coating Removal Rate, Int. J. Manuf. Sys., 1, 57-64, 2011.
  • [27] Srinivasu, D. S., Axinte, D. A., Shipway, P. H., Folkes, J.: Influence of kinematic operating parameters on kerf geometry in abrasive water jet machining of silicon carbide ceramicsInt, J. Mach. Tools Manuf., 49, 14, 1077-1088, 2009.
  • [28] Shanmugam, D. K., Masood, S. H.: An investigation on kerf characteristics in abrasive waterjet cutting of layered composites, J. Mater. Process. Technol., 209, 8, 3887-3893, 2009.
  • [29] Shanmugam, D. K., Wang, J., Liu, H.: Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique, Int. J. Mach. Tools Manuf, 48, 14, 1527-1534, 2008.
  • [30] Balasubramaniam, R., Krishnan, J., Ramakrishnan, N.: A study on the shape of the surface generated by abrasive jet machining, J. Mater. Process. Technol., 121, 1, 102-106, 2002.
  • [31] Ghobeity, A. et al.: Surface evolution models for abrasive jet micromachining of holes in glass and polymethylmethacrylate (PMMA), J. Micromech. Microeng, 17, 11, 2175 2007
  • [32] Hou, Y. L., Ma, X. Y., Li, C.H.: Surface microcosmic morphology evaluation of finished by abrasive jet with grinding wheel as restraint, CCDC’09 Proceedings of the 21st annual International conference on Chinese Control and Decision Conference, 1379-1383, 2009.
  • [33] Jafar, R., Mohammad, H., Spelt, J. K., Papini, M.: Numerical simulation of surface roughness and erosion rate of abrasive jet micro-machined channels, Wear, 303, 1-2, 302-312, 2013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b72a9597-2067-4735-bf33-c9f04bc66a32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.