Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this article is to validate the method of conducting a multipoint temperature measurement in the area of welded joints as a tool for quality assessment of the joints in question. In order to establish a relationship between temperature readout at a given point, the value of heat input and the distance of the point form the weld axis, preliminary tests have been conducted on a set of padding welds. Correlation of measurement data analysis showed the high 0.99 level. In the second stage of the study, temperatures of joints welded with two different methods have been measured: the HPAW (Hybrid Plasma – Arc Welding) and classic SAW (Submerged Arc Welding) method. The obtained temperature curves reflect the intensity of heat input in a given welding process. When compared to thermal effects on metallographic specimens, the shapes of the curves show a potential for quality assessment of joints in production conditions. Estimating thermal effects with classic analytical methods proves imprecise with respect to advanced high-power welding processes. Monitoring temperature will allow to assess the quality of joints in the course of welding, which may be a remarkable factor in terms of limiting the HAZ (heat affected zone) tempering of joints made from MART steels (advanced high strength martensitic steel) – a phenomenon that exceedingly decreases the strength of the joints. The method for quality assessment of welded joints presented in this paper allows to extend the analysis of welding thermal conditions.
Wydawca
Czasopismo
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
Bibliografia
- 1. C. Lesch, N. Kwiaton, and F. B. Klose, “Advanced High Strength Steels (AHSS) for Automotive Applications − Tailored Properties by Smart Microstructural Adjustments” Steel Res. Int., vol. 88, no. 10, pp. 1–21, 2017.
- 2. S. Maggi and M. Murgia, “Introduction to the metallurgic characteristics of advanced high-strength steels for automobile applications” Weld. Int., vol. 22, no. 9, pp. 610–618, 2008.
- 3. H. Spindler, M. Klein, R. Rauch, A. Pichler, and P. Stiaszny, “High Strength and Ultra High Strength Hot Rolled Steel Grades – Products for Advanced Applications,” BHM B. und Hüttenmännische Monatshefte, vol. 157, no. 3, pp. 108–112, 2012.
- 4. J. Klett, I. B. F. Mattos, H. J. Maier, R. H. G. e Silva, and T. Hassel, “Control of the diffusible hydrogen content in different steel phases through the targeted use of different welding consumables in underwater wet welding” Mater. Corros., no. 9, pp. 1–13, 2020.
- 5. M. S. Węglowski, M. Zeman, and A. Grocholewski, “Effect of welding thermal cycles on microstructure and mechanical properties of simulated heat affected zone for a Weldox 1300 ultra-high strength alloy steel” Arch. Metall. Mater., vol. 61, no. 1, pp. 127–132, 2016.
- 6. W. Guo, D. Crowther, J. A. Francis, A. Thompson, Z. Liu, and L. Li, “Microstructure and mechanical properties of laser welded S960 high strength steel” Mater. Des., vol. 85, pp. 534–548, 2015.
- 7. A. Świerczyńska and M. Landowski, “Plasticity of bead-on-plate welds made with the use of stored flux-cored wires for offshore applications” Materials, vol. 13, no. 17, 3888, 2020.
- 8. D. Fydrych, J. Łabanowski, J. Tomków, and G. Rogalski, “Cold Cracking Of Underwater Wet Welded S355G10+N High Strength Steel” Adv. Mater. Sci., vol. 15, no. 3, pp. 48–56, 2015.
- 9. F. Hochhauser, W. Ernst, R. Rauch, R. Vallant, and N. Enzinger, “Influence of the soft zone on the strength of welded modern HSLA steels” Weld. World, vol. 56, no. 5–6, pp. 77–85, 2012.
- 10. A. M. Moreno-Uribe, A. Q. Bracarense, and E. C. P. Pessoa, “The effect of polarity and hydrostatic pressure on operational characteristics of rutile electrode in underwater welding” Materials, vol. 13, no. 21, 5001, 2020.
- 11. M. Szala, G. Winiarski, Ł. Wójcik, and T. Bulzak, “Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel” Materials, vol. 13, no. 9, 2022, 2020.
- 12. L. Tuz, “Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel” Adv. Mater. Sci., vol. 18, no. 3, pp. 34–42, 2018.
- 13. K. Pańcikiewicz, A. Zielińska-Lipiec, and E. Tasak, “Cracking of high-strength steel welded joints” Adv. Mater. Sci., vol. 13, no. 3, pp. 76–85, 2013.
- 14. J. Roy J., R. Chakraborti, R. N. Rai, S. C. Saha, “Studies on microstructure and mechanical properties of modified 9Cr–1Mo (P91) steel in submerged arc welding with TiO2-enriched fluxes” J. Braz. Soc. Mech. Sci. & Eng., vol. 41, no. 10, 468, 2019.
- 15. M. Fiedler, R. Rauch, R. Schnitzer, W. Ernst, G. Simader, and J. Wagner, “The alform® welding system The world’s first system for high-strength welded structures” IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland, pp. 1–5, 2015.
- 16. B. Skowronska, T. Chmielewski, D. Golanski, and J. Szulc, “Weldability of S700MC steel welded with the hybrid plasma + MAG method” Manuf. Rev., vol. 7, no. 4, pp. 1–15, 2020.
- 17. T. Yang, L. Chen, Y. Zhuang, J. F. Liu, and W. L. Chen, “Arcs interaction mechanism in Plasma-MIG hybrid welding of 2219 aluminium alloy” J. Manuf. Process., vol. 56, no. 4, pp. 635–642, 2020.
- 18. Z. Xin, Z. Yang, H. Zhao, and Y. Chen, “Comparative study on welding characteristics of laser-CMT and plasma-CMT hybrid welded AA6082-T6 aluminum alloy butt joints” Materials, vol. 12, no. 20, 3300, 2019.
- 19. A. Beniyash, G. Klimov, and T. Hassel, “The use of non-vacuum electron beam (NVEB) technology as an universal manufacturing process for welding and cutting of high-strength steels” J. Phys. Conf. Ser., vol. 1089, no. 1, pp. 1–9, 2018.
- 20. M. Amraei et al., “Mechanical properties and microstructural evaluation of the heat-affected zone in ultra-high strength steels” Thin-Walled Struct., vol. 157, no. 9, pp. 1–11, 2020.
- 21. K. Kudła and K. Wojsyk, “Czy sposób doprowadzania ciepła ma istotny wpływ na geometrię spoin?” Biul. Inst. Spaw., vol. 56, no. 5, pp. 140–144, 2012.
- 22. K. Kudła and K. Wojsyk, “Ocena ilości ciepła wprowadzonego w procesach spawania łukowego elektrodą topliwą w osłonie gazów ochronnych” Biul. Inst. Spaw., vol. 54, no. 5, pp. 121–126, 2010.
- 23. K. Yurtisik, S. Tirkes, I. Dykhno, C. H. Gur, and R. Gurbuz, “Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding” Soldag. Inspeção, vol. 18, no. 3, pp. 207–216, 2013.
- 24. T. Kik and J. Górka, “Numerical Simulations of Laser and Hybrid S700MC T-Joint Welding” Materials, vol. 12, no. 3, 516, 2019.
- 25. J. Nowacki and A. Sajek, “Verification of Properties of Joints Made of Advances High Strength Steels in the Conditions of the Complex Thermal Cycles of the HPAW Process” Biul. Inst. Spaw., vol. 62, no. 5, pp. 167–173, 2018.
- 26. K. Banerjee, “Improving weldability of an advanced high strength steel by design of base metal microstructure” J. Mater. Process. Technol., vol. 229, pp. 596–608, 2016.
- 27. A. Sajek and J. Nowacki, “Comparative evaluation of various experimental and numerical simulation methods for determination of t 8/5 cooling times in HPAW process weldments” Arch. Civ. Mech. Eng., vol. 18, no. 2, pp. 583–591, 2018.
- 28. Y. Yi, K. Wang, S. Zheng, J. Yi, and L. Xu, “Narrow gap gas metal arc welding of S890QL steel” IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland, pp. 5–8, 2015.
- 29. J. Winczek, M. Gucwa, and K. Makles, “Analysis of thermal cycles and phase transformations during multi-pass arc weld surfacing of steel casts taking into account heat of the weld” J. Appl. Math. Comput. Mech., vol. 17, no. 1, pp. 89–100, 2018.
- 30. L. Sharma and R. Chhibber, “Investigations of Surface Properties of SAW Fluxes Using CaO-SiO2-TiO2 & Al2O3-CaO-SiO2 Ternary Phase Systems” Silicon 2020 (in Press).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7278f02-c526-49db-8de2-6e9dbed5a535