PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the bending bearing capacity of the GGBFS-based geopolymer concrete beams exposed to acidic environment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, ordinary Portland cement is used most of the time as a sticky material of the concrete produced for construction purposes. Unfortunately, the function of the prefabricated concrete made of Portland Cement against chemical factors such as acid attacks and sulfate attacks, raises concerns, because the grout of Portland Cement decomposes, being exposed to acids. Novel construction materials with a strength better than that of the ordinary Portland concrete are required, to be able to resist such corrosive factors. This essay presents an assessment of the strength of GGBFS-based geopolymer concrete samples against acid attacks. In this research, geopolymer concrete beams reinforced with steel and GFRP rebars, also the fabricated cubic concrete samples, underwent tests of mechanical properties, being exposed to acid environments with different pH levels of 4, 6 and 8. Beams reinforced with steel rebars proved to be of a higher strength compared with beams reinforced with GFRP. On an average, the forces applied on the beams reinforced with steel on day 90 and day 300 were, respectively, 14.47 and 14.78% higher than the forces applied on the beams reinforced with GFRP. Compared with the beams reinforced with GFRP, those reinforced with steel revealed to be of a higher resistance when exposed to the environmental changes.
Rocznik
Strony
417--436
Opis fizyczny
Bibliogr. 37 poz., fot., wykr.
Twórcy
  • Department of Civil Engineering, Imam Khomeini International University, soleimani blvd, 34148-96818 Qazvin, Iran
  • Department of Civil Engineering, Imam Khomeini International University, soleimani blvd, 34148-96818 Qazvin, Iran
Bibliografia
  • [1] Kozhukhova NI, Chizhov RV, Zhernovsky IV, Strokova VV. Structure formation of geopolymer perlite binder vs. Type of alkali activating agent. Int J Pharm Technol 2016;8(3):15338–48.
  • [2] Cioffi R, Maffucci L, Santoro L. Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resour Conserv Recycl. 2003;40(1):27–38.
  • [3] North MR, Swaddle TW. Kinetics of silicate exchange in alkaline aluminosilicate solutions. Inorg Chem. 2000;39(12):2661–5.
  • [4] Kim D, et al. Geopolymer formation and its unique properties. Environ Geol. 2006;51(1):103–11.
  • [5] Gourley J, Johnson G. Developments in geopolymer precast concrete. In: Geopolymer, green chemistry, and sustainable development solutions. Saint-Quentin, France: World congress geopolymer; 2005.
  • [6] Laskar SM, Talukdar S. Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. Constr Build Mater. 2017;154:176–90.
  • [7] Mehta A, Siddique R. Sulfuric acid resistance of fly ash based geopolymer concrete. Constr Build Mater. 2017;146:136–43.
  • [8] Zivica V, Bajza A. Acidic attack of cement based materials-a review: Part 1. Principle of acidic attack. Constr Build Mater. 2001;15(8):331–40.
  • [9] Rahmani H, Ramazanianpour A. Effect of binary cement replacement materials on sulfuric acid resistance of dense concretes. Mag Concr Res. 2008;60(2):145–55.
  • [10] Goyal S, et al. Resistance of mineral admixture concrete to acid attack. J Adv Concr Technol. 2009;7(2):273–83.
  • [11] Hewayde E, et al. Effect of mixture design parameters and wetting-drying cycles on resistance of concrete to sulfuric acid attack. J Mater Civ Eng. 2007;19(2):155–63.
  • [12] Sersale R, Frigione G, Bonavita L. Acid depositions and concrete attack: main influences. Cem Concr Res. 1998;28(1):19–24.
  • [13] Hadi MN, Farhan NA, Sheikh MN. Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr Build Mater. 2017;140:424–31.
  • [14] Mo KH, Alengaram UJ, Jumaat MZ. Structural performance of reinforced geopolymer concrete members: a review. Constr Build Mater. 2016;120:251–64.
  • [15] Ranjbar N, et al. Fracture evaluation of multi-layered precast reinforced geopolymer-concrete composite beams by incorporating acoustic emission into mechanical analysis. Constr Build Mater. 2016;127:274–83.
  • [16] Ramezanianpour AA. Cement replacement materials. Springer, Berlin, vol. 10. Berlin Heidelberg: Springer-Verlag; 2014. pp.978–83.
  • [17] Alexander M, Fourie C. Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Mater Struct. 2011;44(1):313–30.
  • [18] Aydın S, et al. Sulfuric acid resistance of high-volume fly ash concrete. Build Environ. 2007;42(2):717–21.
  • [19] Monteny J, De Belie N, Taerwe L. Resistance of different types of concrete mixtures to sulfuric acid. Mater Struct. 2003;36(4):242–9.
  • [20] Alexander M, Bertron A, De Belie N. Performance of cement-based materials in aggressive aqueous environments, vol. 56. Netherlands: Springer; 2013. p. XVI–464.
  • [21] Senhadji Y, et al. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technol. 2014;254:314–23.
  • [22] Chang Z-T, et al. Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack. Cem Concr Res. 2005;35(8):1486–94.
  • [23] Monteny J, et al. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem Concr Res. 2000;30(4):623–34.
  • [24] Rombén, Lars. Aspects on testing methods for acid attacks on concrete-further experiments. No. CBI-F--9-79. Swedish Cement and Concrete Research Inst., 1980.
  • [25] Vincke E, et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int Biodeterior Biodegrad. 2002;49(4):283–92.
  • [26] ASTM, C. “989, Standard specification for slag cement for use in concrete and mortars.” Pennsylvania, USA: American Society for Testing and Materials, 2014.
  • [27] ASTM, C. “33, Standard specification for concrete aggregates.” Pennsylvania, USA: American Society for Testing and Materials, 2013.
  • [28] ASTM, C. “494, Standard specification for chemical admixtures for concrete.” Pennsylvania, USA: American Society for Testing and Materials, 2017.
  • [29] ASTM, C. “293, Standard test method for flexural strength of concrete (using simple beam with center-point loading).” Pennsylvania, USA: American Society for Testing and Materials, 2016.
  • [30] EN, B. “12390–3, Testing hardened concrete. Compressive strength of test specimens.” British Standards Institution: London, 2019.
  • [31] Reddy, D. V., J. B. Edouard, K. Sobhan, and S. S. Rajpathak. “Durability of reinforced fly ash-based geopolymer concrete in the marine environment.” In proceedings of 36th conference on our world in concrete and structures, Singapore; 2011, vol. 10.
  • [32] Albitar M, et al. Durability evaluation of geopolymer and conventional concretes. Constr Build Mater. 2017;136:374–85.
  • [33] ACI Committee 318. “Building code requirements for structural concrete (ACI 318-14): An ACI standard; commentary on building code requirements for structural concrete (ACI 318R-14).” American Concrete Institute, 2014.
  • [34] CSA (Canadian Standards Association). “Design of concrete structures.” Ottawa, Canada;2014, A23, p. 3–14.
  • [35] ACI Committee. “Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars (ACI 440. 1R-15).” Farmington Hills, Michigan: American Concrete Institute, 2015.
  • [36] CSA (Canadian Standards Association). “Design and construction of building structures with fibre-reinforced polymers.” American Concrete Institute, Ontario, Canada, S806–S812, 2012.
  • [37] Maleki MS, et al. Measuring the electrical resistivity of concrete by bulk surface, galvapulse and the electrical conductivity methods. Concr Res. 2017;10:19–28.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b71f3592-dc5a-463d-bd3a-5aa3a7ebe55d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.